Answer:

Step-by-step explanation:
![\displaystyle a^2 + 2a\sqrt{\frac{a^2}{4} + h^2} = S.A. \\ \\ 14^2 + 2[14]\sqrt{\frac{14^2}{4} + 19^2} = S.A. \\ \\ 196 + 28\sqrt{\frac{196}{4} + 361} ≈ 762,9567885 ≈ 762,96](https://tex.z-dn.net/?f=%5Cdisplaystyle%20a%5E2%20%2B%202a%5Csqrt%7B%5Cfrac%7Ba%5E2%7D%7B4%7D%20%2B%20h%5E2%7D%20%3D%20S.A.%20%5C%5C%20%5C%5C%20%2014%5E2%20%2B%202%5B14%5D%5Csqrt%7B%5Cfrac%7B14%5E2%7D%7B4%7D%20%2B%2019%5E2%7D%20%3D%20S.A.%20%5C%5C%20%5C%5C%20196%20%2B%2028%5Csqrt%7B%5Cfrac%7B196%7D%7B4%7D%20%2B%20361%7D%20%E2%89%88%20762%2C9567885%20%E2%89%88%20762%2C96)
I am joyous to assist you anytime.
Answer:
The answer to your question is the letter A.
Step-by-step explanation:
a) - c < 0 This option is correct c > 0 but -c < 0 or 7 > 0 and -7 < 0
b) c < -a This option is incorrect. 7 > - (-4) or 7 > 4
c) c < - b This option is incorrect. 7 > - 1
Conclusion
The right answer is the first choice because is the only that satisfies the inequality.
Answer:
The measure of the fourth angle is 90°.
Step-by-step explanation:
Let x be the measure of the fourth angle.
Given measures of the other angles : 50°,120° & 100°.
<u>Knowledge Required </u>:
The sum of all the interior angles of a quadrilateral is 360°.
Then,
50°+120°+100°+x=360°
⇒x = 360°-270°
⇒x = 90°
.°. x = 90°
Hence, the measure of the fourth angle is 90°.