The value of f[ -4 ] and g°f[-2] are
and 13 respectively.
<h3>What is the value of f[-4] and g°f[-2]?</h3>
Given the function;


- f[ -4 ] = ?
- g°f[ -2 ] = ?
For f[ -4 ], we substitute -4 for every variable x in the function.

For g°f[-2]
g°f[-2] is expressed as g(f(-2))
![g(\frac{3x-2}{x+1}) = (\frac{3x-2}{x+1}) + 5\\\\g(\frac{3x-2}{x+1}) = \frac{3x-2}{x+1} + \frac{5(x+1)}{x+1}\\\\g(\frac{3x-2}{x+1}) = \frac{3x-2+5(x+1)}{x+1}\\\\g(\frac{3x-2}{x+1}) = \frac{8x+3}{x+1}\\\\We\ substitute \ in \ [-2] \\\\g(\frac{3x-2}{x+1}) = \frac{8(-2)+3}{(-2)+1}\\\\g(\frac{3x-2}{x+1}) = \frac{-16+3}{-2+1}\\\\g(\frac{3x-2}{x+1}) = \frac{-13}{-1}\\\\g(\frac{3x-2}{x+1}) = 13](https://tex.z-dn.net/?f=g%28%5Cfrac%7B3x-2%7D%7Bx%2B1%7D%29%20%3D%20%20%28%5Cfrac%7B3x-2%7D%7Bx%2B1%7D%29%20%2B%205%5C%5C%5C%5Cg%28%5Cfrac%7B3x-2%7D%7Bx%2B1%7D%29%20%3D%20%20%5Cfrac%7B3x-2%7D%7Bx%2B1%7D%20%2B%20%5Cfrac%7B5%28x%2B1%29%7D%7Bx%2B1%7D%5C%5C%5C%5Cg%28%5Cfrac%7B3x-2%7D%7Bx%2B1%7D%29%20%3D%20%20%5Cfrac%7B3x-2%2B5%28x%2B1%29%7D%7Bx%2B1%7D%5C%5C%5C%5Cg%28%5Cfrac%7B3x-2%7D%7Bx%2B1%7D%29%20%3D%20%20%5Cfrac%7B8x%2B3%7D%7Bx%2B1%7D%5C%5C%5C%5CWe%5C%20substitute%20%5C%20in%20%5C%20%5B-2%5D%20%5C%5C%5C%5Cg%28%5Cfrac%7B3x-2%7D%7Bx%2B1%7D%29%20%3D%20%20%5Cfrac%7B8%28-2%29%2B3%7D%7B%28-2%29%2B1%7D%5C%5C%5C%5Cg%28%5Cfrac%7B3x-2%7D%7Bx%2B1%7D%29%20%3D%20%20%5Cfrac%7B-16%2B3%7D%7B-2%2B1%7D%5C%5C%5C%5Cg%28%5Cfrac%7B3x-2%7D%7Bx%2B1%7D%29%20%3D%20%20%5Cfrac%7B-13%7D%7B-1%7D%5C%5C%5C%5Cg%28%5Cfrac%7B3x-2%7D%7Bx%2B1%7D%29%20%3D%20%2013)
Therefore, the value of f[ -4 ] and g°f[-2] are
and 13 respectively.
Learn more about composite functions here: brainly.com/question/20379727
#SPJ1
Answer:
You can also use standard deviation to compare two sets of data. For example, a weather reporter is analyzing the high temperature forecasted for two different cities. A low standard deviation would show a reliable weather forecast.
Step-by-step explanation:
Answer:
Factor by which kinetic energy increase = 4 times
Step-by-step explanation:
Given,
- Mass of the car, v1 = 1500 kg
- initial speed of car = 35 miles/h

= 15.64 m/s
Initial kinetic energy of the car is given by,


= 183606.46 J
- Final velocity of car v2 = 70 miles/hour

= 31.29 m/s
So, final kinetic energy of car is given by


= 734425.84 J
Now, the ratio of final to initial kinetic energy can be given by,

Hence, the kinetic energy will increase by 4 times.