Answer:
The mentioned case is an illustration of the missense mutation. A missense mutation is a kind of nonsynonymous substitution, that is, it is a mutation in which a variation in a solitary nucleotide leads to the formation of a codon, which encrypts for a distinct kind of amino acid.
When a missense mutation takes place within a DNA, a modification in one of the RNA codon sequences results at the time of transcription. This change in codon will ultimately result in the formation of a different amino acid, which gets presented within a protein at the time of translation. Like in the given case, a change in codon resulted in the substitution of the amino acid tyrosine with an amino acid cysteine.
Answer:
Increase in transcription
Explanation:
Transcription is the process of forming RNA from DNA. It can be controlled by many factors like a repressor. Repressor can bind to the operator region of the promoter and hinder the movement of RNA Polymerase enzyme, halting the process.
Here, it is given that the repressor needs to first bind to an effector molecule X. Once it binds to X, it is activated and then it can bind to operator of gene A to inhibit its transcription. If the X binding domain on repressor is mutated it wont be able to bind to X. Thus it wont get activated and wont be able to attach to operator region to inhibit transcription. Hence, transcription process will keep going on uncontrolled.
Answer:
The conversion of ADP to ATP using light energy is the best description of photophosphorylation.
To be more correct, the left side is alkali metals