Answer:
it has to equal -1 x= to -1 parenthesees
1 times -1= -1 its true for that 1 answer but not the others
Okay,
Radius, is half of the diameter.
Diameter, is the line that splits the circle in half.
1). R=50 D=100
2). R=10 D=20
3). R=5 D=10
4). R=29 D=58
5). R=11 D=22
6). R=31.5 D=63
7). R=45 D=90
8). R=7 D=14
9). R=49 D=98
Answer:
ah yes mama
Step-by-step explanation:
<h3>Given:</h3><h3>Large cone:</h3>
<h3>Small cone:</h3>
<h3>Note that:</h3>
<h3>To find:</h3>
- The volume of the frustum of the given cone.
<h3>Solution:</h3>
- Frustum is a part of a cone formed by cutting off the top by a parallel plane.

Let's solve!
First, let's find the volume of the smaller cone.
Substitute the values according to the
formula.


Now, we can round off to the nearest hundredth.
The value in the thousandths place is smaller than 5 so we won't have to round up.

Next, let's find the volume of the bigger cone.
Substitute the values according to the formula.


Now, we can round off to the nearest hundredth.
The value in thousandths place is smaller than 5 so we won't have to round up.

Now, we can find the volume of the frustum.
We'll have to minus the volume of the smaller cone from the bigger cone.


<u>Hence, the volume of the frustum is 1172.86 cubic centimeters.</u>
<span> (x + 3) • (x - 12)
</span>
The first term is, <span> <span>x2</span> </span> its coefficient is <span> 1 </span>.
The middle term is, <span> -9x </span> its coefficient is <span> -9 </span>.
The last term, "the constant", is <span> -36 </span>
Step-1 : Multiply the coefficient of the first term by the constant <span> <span> 1</span> • -36 = -36</span>
Step-2 : Find two factors of -36 whose sum equals the coefficient of the middle term, which is <span> -9 </span>.
<span><span> -36 + 1 = -35</span><span> -18 + 2 = -16</span><span> -12 + 3 = -9 That's it</span></span>
Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above, -12 and 3
<span>x2 - 12x</span> + 3x - 36
Step-4 : Add up the first 2 terms, pulling out like factors :
x • (x-12)
Add up the last 2 terms, pulling out common factors :
3 • (x-12)
Step-5 : Add up the four terms of step 4 :
(x+3) • (x-12)
Which is the desired factorization
Final result :<span> (x + 3) • (x - 12)</span>