Question:
If a sample of 2 hammer is selected
(a) find the probability that all in the sample are defective.
(b) find the probability that none in the sample are defective.
Answer:
a 
b 
Step-by-step explanation:
Given
--- hammers
--- selection
This will be treated as selection without replacement. So, 1 will be subtracted from subsequent probabilities
Solving (a): Probability that both selection are defective.
For two selections, the probability that all are defective is:




Solving (b): Probability that none are defective.
The probability that a selection is not defective is:

For two selections, the probability that all are not defective is:




Volume of the hexagonal prism = 1732.7772 ft³
Solution:
Height of the prism (H) = 15.4 ft
Side of the hexagon base (b) = 6.58 ft
Height from center to the side length (h) = 5.7 ft.
Let us first find the area of the base.
Area of the base (B) = 

Area of the base (B) = 112.518 ft²
To find the volume of the hexagonal prism:
Volume of the hexagonal prism = Area of the base × Height
= 112.518 × 15.4
= 1732.7772 ft³
The volume of the hexagonal prism is about 1732.7772 ft³.
Answer:
4.23
Step-by-step explanation:
3.68 + 0.21 + 0.25 + 0.01 + 0.08 = 4.23