1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
-Dominant- [34]
3 years ago
15

A coin is flipped, then a standard number cube is rolled. Let A represent the event “the coin lands showing heads” and B represe

nt “the standard number cube lands showing 4.”
What is P(A|B)? Convert answers to decimals and round to three decimal places when necessary.
Mathematics
1 answer:
boyakko [2]3 years ago
6 0

Answer:

1/2

Step-by-step explanation:

Conditional probability, giving the standard number cube lands showing 4, think about what are all the possible sets left?

That's right, (Heads, 4) and (Tails,4)

Given that there are only 2 possible cases remaining, to get heads on the coins, there is only 1 possible case out of the two cases shown. P(A|B) is thus 1/2

You might be interested in
Question 4 help please
IgorC [24]
I would say about 40%
6 0
3 years ago
Read 2 more answers
Find the distance between the points (6, 3) and (6,-5).
tiny-mole [99]

the answer is negative two over zero

6 0
3 years ago
A semi-circle window can be used above a doorway or as an accent window
anzhelika [568]

A semicircle is a part of a circle, and it is referred to as half of a given circle. Thud the area of the <em>semi-circle</em> window is 982 in^{2}.

A circle is a shape that is <u>bounded</u> by a <em>curved</em> path which is referred to as the <em>circumference</em>. Some <u>parts</u> of a circle are radius, diameter, sector, arc, semi-circle, circumference, etc.

A <em>semicircle</em> is a <u>part</u> of a <u>circle</u>, and it is referred to as <em>half </em>of a given <em>circle</em>.

such that:

<em>Area</em> of a <u>circle</u> = \pi r^{2}

and

area of a <u>semicircle</u> = \frac{\pi r^{2} }{2}

where: r is the <u>radius </u>of the <u>circle</u>, and \pi is a <u>constant </u>with a value of \frac{22}{7}.

Thus from the given question, it can be inferred that;

r = \frac{50}{2}

 = 25

r = 25 in

Thus, the area of the<em> semi-circle</em> can be determined as;

area of the <em>semi-circle</em> = \frac{1}{2} * \frac{22}{7} * 25^{2}

                                      = 982.1429

area of the semi-circle = 982.14 in^{2}

The area of the <em>semi-circle</em> window is approximately 982 in^{2}.

for more clarifications on the area of a semi-circle, visit: brainly.com/question/15937849

#SPJ 1

8 0
2 years ago
Using the distributive property method on 6x32 and 7x29
Maru [420]

6\cdot32=6(30+2)=(6)(30)+(6)(2)=180+12=192\\\\7\cdot29=7(30-1)=(7)(30)-(7)(1)=210-7=203

6 0
3 years ago
Read 2 more answers
The graph of f(x)= 3/1+x^2 is shown in the figure to the right. Use the second derivative of f to find the intervals on which f
GenaCL600 [577]

Answer:

Concave Up Interval: (- \infty,\frac{-\sqrt{3} }{3} )U(\frac{\sqrt{3} }{3} , \infty)

Concave Down Interval: (\frac{-\sqrt{3} }{3}, \frac{\sqrt{3} }{3} )

General Formulas and Concepts:

<u>Calculus</u>

Derivative of a Constant is 0.

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Second Derivative Test:

  • Possible Points of Inflection (P.P.I) - Tells us the possible x-values where the graph f(x) may change concavity. Occurs when f"(x) = 0 or undefined
  • Points of Inflection (P.I) - Actual x-values when the graph f(x) changes concavity
  • Number Line Test - Helps us determine whether a P.P.I is a P.I

Step-by-step explanation:

<u>Step 1: Define</u>

f(x)=\frac{3}{1+x^2}

<u>Step 2: Find 2nd Derivative</u>

  1. 1st Derivative [Quotient/Chain/Basic]:                           f'(x)=\frac{0(1+x^2)-2x \cdot 3}{(1+x^2)^2}
  2. Simplify 1st Derivative:                                                           f'(x)=\frac{-6x}{(1+x^2)^2}
  3. 2nd Derivative [Quotient/Chain/Basic]:     f"(x)=\frac{-6(1+x^2)^2-2(1+x^2) \cdot 2x \cdot -6x}{((1+x^2)^2)^2}
  4. Simplify 2nd Derivative:                                                       f"(x)=\frac{6(3x^2-1)}{(1+x^2)^3}

<u>Step 3: Find P.P.I</u>

  • Set f"(x) equal to zero:                    0=\frac{6(3x^2-1)}{(1+x^2)^3}

<em>Case 1: f" is 0</em>

  1. Solve Numerator:                           0=6(3x^2-1)
  2. Divide 6:                                          0=3x^2-1
  3. Add 1:                                              1=3x^2
  4. Divide 3:                                         \frac{1}{3} =x^2
  5. Square root:                                   \pm \sqrt{\frac{1}{3}} =x
  6. Simplify:                                          \pm \frac{\sqrt{3}}{3}  =x
  7. Rewrite:                                          x= \pm \frac{\sqrt{3}}{3}

<em>Case 2: f" is undefined</em>

  1. Solve Denominator:                    0=(1+x^2)^3
  2. Cube root:                                   0=1+x^2
  3. Subtract 1:                                    -1=x^2

We don't go into imaginary numbers when dealing with the 2nd Derivative Test, so our P.P.I is x= \pm \frac{\sqrt{3}}{3} (x ≈ ±0.57735).

<u>Step 4: Number Line Test</u>

<em>See Attachment.</em>

We plug in the test points into the 2nd Derivative and see if the P.P.I is a P.I.

x = -1

  1. Substitute:                    f"(x)=\frac{6(3(-1)^2-1)}{(1+(-1)^2)^3}
  2. Exponents:                   f"(x)=\frac{6(3(1)-1)}{(1+1)^3}
  3. Multiply:                        f"(x)=\frac{6(3-1)}{(1+1)^3}
  4. Subtract/Add:              f"(x)=\frac{6(2)}{(2)^3}
  5. Exponents:                  f"(x)=\frac{6(2)}{8}
  6. Multiply:                       f"(x)=\frac{12}{8}
  7. Simplify:                       f"(x)=\frac{3}{2}

This means that the graph f(x) is concave up before x=\frac{-\sqrt{3}}{3}.

x = 0

  1. Substitute:                    f"(x)=\frac{6(3(0)^2-1)}{(1+(0)^2)^3}
  2. Exponents:                   f"(x)=\frac{6(3(0)-1)}{(1+0)^3}
  3. Multiply:                       f"(x)=\frac{6(0-1)}{(1+0)^3}
  4. Subtract/Add:              f"(x)=\frac{6(-1)}{(1)^3}
  5. Exponents:                  f"(x)=\frac{6(-1)}{1}
  6. Multiply:                       f"(x)=\frac{-6}{1}
  7. Divide:                         f"(x)=-6

This means that the graph f(x) is concave down between  and .

x = 1

  1. Substitute:                    f"(x)=\frac{6(3(1)^2-1)}{(1+(1)^2)^3}
  2. Exponents:                   f"(x)=\frac{6(3(1)-1)}{(1+1)^3}
  3. Multiply:                       f"(x)=\frac{6(3-1)}{(1+1)^3}
  4. Subtract/Add:              f"(x)=\frac{6(2)}{(2)^3}
  5. Exponents:                  f"(x)=\frac{6(2)}{8}
  6. Multiply:                       f"(x)=\frac{12}{8}
  7. Simplify:                       f"(x)=\frac{3}{2}

This means that the graph f(x) is concave up after x=\frac{\sqrt{3}}{3}.

<u>Step 5: Identify</u>

Since f"(x) changes concavity from positive to negative at x=\frac{-\sqrt{3}}{3} and changes from negative to positive at x=\frac{\sqrt{3}}{3}, then we know that the P.P.I's x= \pm \frac{\sqrt{3}}{3} are actually P.I's.

Let's find what actual <em>point </em>on f(x) when the concavity changes.

x=\frac{-\sqrt{3}}{3}

  1. Substitute in P.I into f(x):                    f(\frac{-\sqrt{3}}{3} )=\frac{3}{1+(\frac{-\sqrt{3} }{3} )^2}
  2. Evaluate Exponents:                          f(\frac{-\sqrt{3}}{3} )=\frac{3}{1+\frac{1}{3} }
  3. Add:                                                    f(\frac{-\sqrt{3}}{3} )=\frac{3}{\frac{4}{3} }
  4. Divide:                                                f(\frac{-\sqrt{3}}{3} )=\frac{9}{4}

x=\frac{\sqrt{3}}{3}

  1. Substitute in P.I into f(x):                    f(\frac{\sqrt{3}}{3} )=\frac{3}{1+(\frac{\sqrt{3} }{3} )^2}
  2. Evaluate Exponents:                          f(\frac{\sqrt{3}}{3} )=\frac{3}{1+\frac{1}{3} }
  3. Add:                                                    f(\frac{\sqrt{3}}{3} )=\frac{3}{\frac{4}{3} }
  4. Divide:                                                f(\frac{\sqrt{3}}{3} )=\frac{9}{4}

<u>Step 6: Define Intervals</u>

We know that <em>before </em>f(x) reaches x=\frac{-\sqrt{3}}{3}, the graph is concave up. We used the 2nd Derivative Test to confirm this.

We know that <em>after </em>f(x) passes x=\frac{\sqrt{3}}{3}, the graph is concave up. We used the 2nd Derivative Test to confirm this.

Concave Up Interval: (- \infty,\frac{-\sqrt{3} }{3} )U(\frac{\sqrt{3} }{3} , \infty)

We know that <em>after</em> f(x) <em>passes</em> x=\frac{-\sqrt{3}}{3} , the graph is concave up <em>until</em> x=\frac{\sqrt{3}}{3}. We used the 2nd Derivative Test to confirm this.

Concave Down Interval: (\frac{-\sqrt{3} }{3}, \frac{\sqrt{3} }{3} )

6 0
2 years ago
Other questions:
  • The Chesapeake Bay tides vary between 4 feet and 6 feet. The tide is at its lowest point when time (t) is 0 and completes a full
    14·1 answer
  • It costs a band $ 8 per T-shirt produced. At a small festival the band gives away 10 T-shirts, and sells others for $ 20 each. T
    14·1 answer
  • johnny saves all his nickels and dimes in a jar. one day he counted them and found there were 81 coins worth 5.55. how many nick
    7·2 answers
  • Plutonium-240 decays according to the function L where o
    13·1 answer
  • Tonka weighs 150 lb. He is loading a freight elevator with identical 67-pound boxes. The elevator can carry no more than 2000 lb
    9·1 answer
  • A psychology professor at a university is interested in determining the proportion of undergraduate students at her university w
    5·1 answer
  • Carmen is making gift boxes for her friends. It takes her 10 minutes to pack a 4-pound treat box, and it takes her 15 minutes to
    9·1 answer
  • Can someone help me please!?
    10·1 answer
  • Jeyniel wrote the expression x^3/y^2. If x=4 and y=2; how much is the value of the expression? *
    11·2 answers
  • Can you help me with this thanks
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!