1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ksivusya [100]
3 years ago
7

The expressions A, B, C, D, and E are left-hand sides of trigonometric identities. The expressions 1, 2, 3, 4, and 5 are right-h

and side of identities. Match each of the left-hand sides below with the appropriate right-hand side.
A. tan(x)
B. cos(x)
C. sec(x)csc(x)
D. 1â(cos(x))^2/ cos(x)
E. 2sec(x)

1. sin(x)tan(x)
2. sin(x)sec(x)
3. tan(x)+cot(x)
4. cos(x)/1âsin(x)+1âsin(x)/cos(x)
5. sec(x)âsec(x)(sin(x))2
Mathematics
1 answer:
Semenov [28]3 years ago
3 0

Answer:

A.\ \tan(x) \to 2.\ \sin(x) \sec(x)

B.\ \cos(x) \to 5. \sec(x) - \sec(x)\sin^2(x)

C.\ \sec(x)csc(x) \to 3. \tan(x) + \cot(x)

D. \frac{1 - (cos(x))^2}{cos(x)} \to 1. \sin(x) \tan(x)

E.\ 2\sec(x) \to\ 4.\ \frac{\cos(x)}{1 - \sin(x)} +\frac{1-\sin(x)}{\cos(x)}

Step-by-step explanation:

Given

A.\ \tan(x)

B.\ \cos(x)

C.\ \sec(x)csc(x)

D.\ \frac{1 - (cos(x))^2}{cos(x)}

E.\ 2\sec(x)

Required

Match the above with the appropriate identity from

1.\ \sin(x) \tan(x)

2.\ \sin(x) \sec(x)

3.\ \tan(x) + \cot(x)

4.\ \frac{cos(x)}{1 - sin(x)} + \frac{1 - \sin(x)}{cos(x)}

5.\ \sec(x) - \sec(x)(\sin(x))^2

Solving (A):

A.\ \tan(x)

In trigonometry,

\frac{sin(x)}{\cos(x)} = \tan(x)

So, we have:

\tan(x) = \frac{\sin(x)}{\cos(x)}

Split

\tan(x) = \sin(x) * \frac{1}{\cos(x)}

In trigonometry

\frac{1}{\cos(x)} =sec(x)

So, we have:

\tan(x) = \sin(x) * \sec(x)

\tan(x) = \sin(x) \sec(x) --- proved

Solving (b):

B.\ \cos(x)

Multiply by \frac{\cos(x)}{\cos(x)} --- an equivalent of 1

So, we have:

\cos(x) = \cos(x) * \frac{\cos(x)}{\cos(x)}

\cos(x) = \frac{\cos^2(x)}{\cos(x)}

In trigonometry:

\cos^2(x) = 1 - \sin^2(x)

So, we have:

\cos(x) = \frac{1 - \sin^2(x)}{\cos(x)}

Split

\cos(x) = \frac{1}{\cos(x)} - \frac{\sin^2(x)}{\cos(x)}

Rewrite as:

\cos(x) = \frac{1}{\cos(x)} - \frac{1}{\cos(x)}*\sin^2(x)

Express \frac{1}{\cos(x)}\ as\ \sec(x)

\cos(x) = \sec(x) - \sec(x) * \sin^2(x)

\cos(x) = \sec(x) - \sec(x)\sin^2(x) --- proved

Solving (C):

C.\ \sec(x)csc(x)

In trigonometry

\sec(x)= \frac{1}{\cos(x)}

and

\csc(x)= \frac{1}{\sin(x)}

So, we have:

\sec(x)csc(x) = \frac{1}{\cos(x)}*\frac{1}{\sin(x)}

Multiply by \frac{\cos(x)}{\cos(x)} --- an equivalent of 1

\sec(x)csc(x) = \frac{1}{\cos(x)}*\frac{1}{\sin(x)} * \frac{\cos(x)}{\cos(x)}

\sec(x)csc(x) = \frac{1}{\cos^2(x)}*\frac{\cos(x)}{\sin(x)}

Express \frac{1}{\cos^2(x)}\ as\ \sec^2(x) and \frac{\cos(x)}{\sin(x)}\ as\ \frac{1}{\tan(x)}

\sec(x)csc(x) = \sec^2(x)*\frac{1}{\tan(x)}

\sec(x)csc(x) = \frac{\sec^2(x)}{\tan(x)}

In trigonometry:

tan^2(x) + 1 =\sec^2(x)

So, we have:

\sec(x)csc(x) = \frac{\tan^2(x) + 1}{\tan(x)}

Split

\sec(x)csc(x) = \frac{\tan^2(x)}{\tan(x)} + \frac{1}{\tan(x)}

Simplify

\sec(x)csc(x) = \tan(x) + \cot(x)  proved

Solving (D)

D.\ \frac{1 - (cos(x))^2}{cos(x)}

Open bracket

\frac{1 - (cos(x))^2}{cos(x)} = \frac{1 - cos^2(x)}{cos(x)}

1 - \cos^2(x) = \sin^2(x)

So, we have:

\frac{1 - (cos(x))^2}{cos(x)} = \frac{sin^2(x)}{cos(x)}

Split

\frac{1 - (cos(x))^2}{cos(x)} = \sin(x) * \frac{sin(x)}{cos(x)}

\frac{sin(x)}{\cos(x)} = \tan(x)

So, we have:

\frac{1 - (cos(x))^2}{cos(x)} = \sin(x) * \tan(x)

\frac{1 - (cos(x))^2}{cos(x)} = \sin(x) \tan(x) --- proved

Solving (E):

E.\ 2\sec(x)

In trigonometry

\sec(x)= \frac{1}{\cos(x)}

So, we have:

2\sec(x) = 2 * \frac{1}{\cos(x)}

2\sec(x) = \frac{2}{\cos(x)}

Multiply by \frac{1 - \sin(x)}{1 - \sin(x)} --- an equivalent of 1

2\sec(x) = \frac{2}{\cos(x)} * \frac{1 - \sin(x)}{1 - \sin(x)}

2\sec(x) = \frac{2(1 - \sin(x))}{(1 - \sin(x))\cos(x)}

Open bracket

2\sec(x) = \frac{2 - 2\sin(x)}{(1 - \sin(x))\cos(x)}

Express 2 as 1 + 1

2\sec(x) = \frac{1+1 - 2\sin(x)}{(1 - \sin(x))\cos(x)}

Express 1 as \sin^2(x) + \cos^2(x)

2\sec(x) = \frac{\sin^2(x) + \cos^2(x)+1 - 2\sin(x)}{(1 - \sin(x))\cos(x)}

Rewrite as:

2\sec(x) = \frac{\cos^2(x)+1 - 2\sin(x)+\sin^2(x)}{(1 - \sin(x))\cos(x)}

Expand

2\sec(x) = \frac{\cos^2(x)+1 - \sin(x)- \sin(x)+\sin^2(x)}{(1 - \sin(x))\cos(x)}

Factorize

2\sec(x) = \frac{\cos^2(x)+1(1 - \sin(x))- \sin(x)(1-\sin(x))}{(1 - \sin(x))\cos(x)}

Factor out 1 - sin(x)

2\sec(x) = \frac{\cos^2(x)+(1- \sin(x))(1-\sin(x))}{(1 - \sin(x))\cos(x)}

Express as squares

2\sec(x) = \frac{\cos^2(x)+(1-\sin(x))^2}{(1 - \sin(x))\cos(x)}

Split

2\sec(x) = \frac{\cos^2(x)}{(1 - \sin(x))\cos(x)} +\frac{(1-\sin(x))^2}{(1 - \sin(x))\cos(x)}

Cancel out like factors

2\sec(x) = \frac{\cos(x)}{1 - \sin(x)} +\frac{1-\sin(x)}{\cos(x)} --- proved

You might be interested in
Forty percent of the
djverab [1.8K]
The answer is b
You divide 394 by 4 to make it 10% and then multiple by 10 to make that 100%
8 0
3 years ago
Rodrigo tiene 3 listones de madera: el primer listón es 0,75 cm más largo que el segundo; el segundo listón mide 22,25 cm; y el
disa [49]
True true true si di di du du du dud jj

7 0
3 years ago
A rectangular page is to contain 6 square inches of print. The margins at the top and bottom of the page are to be 2 inches wide
mixer [17]

Answer:

A(t)  =  27.86 in²

Dimensions of the paper:

L =  3.73 in

w = 7.47 in

Step-by-step explanation:

The total area of a rectangular page  A  = ( x + 2)* (y + 4 )         x  is the length and  y the wide. x  and  y  are the dimensions of the print area

The print area of the paper is  A =  6 in²       6 = x*y     y  =  6/x

Then print area as a function of x is

A(x)  =  ( x + 2 ) * ( 6/x + 4 )    ⇒  A(x)  =  6  +  4*x  + 12/x + 8

Taking derivatives on both sides of the equation:

A´(x)  =  4  - 12/x²        A´(x)  =  0     4  =  12 /x²

x²  = 12/4       x =√3    x  =  1.73  in  and   y  =  6 / 1.73

y  =  3.47 in

Then the dimensions of the paper  are.

Length  L =  x  + 2  = 3.73 in      and   w  =  3.47 + 4  = 7.47 in

And the least amount of paper is

A(t)  =  3.73* 7.47  =  27.86 in²

To find out if x = 1.73 is an x coordinate for a minimum we get the second derivative

A´´(x)  =  24/x³    is always positive   A´´(x) > 0  then we have a minimum for A at  x = 1.73

8 0
3 years ago
Conpute: -2/3 + 8/9​
EleoNora [17]

Answer:

0.22222222222

Step-by-step explanation:

Its what my calc said..

7 0
3 years ago
Read 2 more answers
• Henry's regular work week is 40 hours. Last week he was ill and only worked
Sliva [168]

Answer:

24

Step-by-step explanation:

6 0
3 years ago
Other questions:
  • Following are measurements of soil concentrations (in mg/kg) of chromium (Cr) and nickel (Ni) at 20 sites in the area of Clevela
    5·1 answer
  • A pattern follows the rule "Starting with three, every consecutive line has 2 less than twice the previous line."
    12·1 answer
  • Cx = r + d solve for x
    7·1 answer
  • A. Identify the percentage, rate and base.
    14·1 answer
  • The length of a rectangle is 4 meters less than 2 times the width of the perimeter is 40 meters. Find the width.
    15·1 answer
  • Is this right? Please tell me.... ​
    10·2 answers
  • E^x is greater than or equal to 25
    8·1 answer
  • The marked price of a radio is 20%more than its cost price. The radio is sold to make the profit of 10 %.If the profit is 80,wha
    8·1 answer
  • Simplify the expression 7h+​(−8.3d​)−13+6d−2.9h.
    10·1 answer
  • Find the midpoint of X (26,56) and Y (26,1)
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!