1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ksivusya [100]
3 years ago
7

The expressions A, B, C, D, and E are left-hand sides of trigonometric identities. The expressions 1, 2, 3, 4, and 5 are right-h

and side of identities. Match each of the left-hand sides below with the appropriate right-hand side.
A. tan(x)
B. cos(x)
C. sec(x)csc(x)
D. 1â(cos(x))^2/ cos(x)
E. 2sec(x)

1. sin(x)tan(x)
2. sin(x)sec(x)
3. tan(x)+cot(x)
4. cos(x)/1âsin(x)+1âsin(x)/cos(x)
5. sec(x)âsec(x)(sin(x))2
Mathematics
1 answer:
Semenov [28]3 years ago
3 0

Answer:

A.\ \tan(x) \to 2.\ \sin(x) \sec(x)

B.\ \cos(x) \to 5. \sec(x) - \sec(x)\sin^2(x)

C.\ \sec(x)csc(x) \to 3. \tan(x) + \cot(x)

D. \frac{1 - (cos(x))^2}{cos(x)} \to 1. \sin(x) \tan(x)

E.\ 2\sec(x) \to\ 4.\ \frac{\cos(x)}{1 - \sin(x)} +\frac{1-\sin(x)}{\cos(x)}

Step-by-step explanation:

Given

A.\ \tan(x)

B.\ \cos(x)

C.\ \sec(x)csc(x)

D.\ \frac{1 - (cos(x))^2}{cos(x)}

E.\ 2\sec(x)

Required

Match the above with the appropriate identity from

1.\ \sin(x) \tan(x)

2.\ \sin(x) \sec(x)

3.\ \tan(x) + \cot(x)

4.\ \frac{cos(x)}{1 - sin(x)} + \frac{1 - \sin(x)}{cos(x)}

5.\ \sec(x) - \sec(x)(\sin(x))^2

Solving (A):

A.\ \tan(x)

In trigonometry,

\frac{sin(x)}{\cos(x)} = \tan(x)

So, we have:

\tan(x) = \frac{\sin(x)}{\cos(x)}

Split

\tan(x) = \sin(x) * \frac{1}{\cos(x)}

In trigonometry

\frac{1}{\cos(x)} =sec(x)

So, we have:

\tan(x) = \sin(x) * \sec(x)

\tan(x) = \sin(x) \sec(x) --- proved

Solving (b):

B.\ \cos(x)

Multiply by \frac{\cos(x)}{\cos(x)} --- an equivalent of 1

So, we have:

\cos(x) = \cos(x) * \frac{\cos(x)}{\cos(x)}

\cos(x) = \frac{\cos^2(x)}{\cos(x)}

In trigonometry:

\cos^2(x) = 1 - \sin^2(x)

So, we have:

\cos(x) = \frac{1 - \sin^2(x)}{\cos(x)}

Split

\cos(x) = \frac{1}{\cos(x)} - \frac{\sin^2(x)}{\cos(x)}

Rewrite as:

\cos(x) = \frac{1}{\cos(x)} - \frac{1}{\cos(x)}*\sin^2(x)

Express \frac{1}{\cos(x)}\ as\ \sec(x)

\cos(x) = \sec(x) - \sec(x) * \sin^2(x)

\cos(x) = \sec(x) - \sec(x)\sin^2(x) --- proved

Solving (C):

C.\ \sec(x)csc(x)

In trigonometry

\sec(x)= \frac{1}{\cos(x)}

and

\csc(x)= \frac{1}{\sin(x)}

So, we have:

\sec(x)csc(x) = \frac{1}{\cos(x)}*\frac{1}{\sin(x)}

Multiply by \frac{\cos(x)}{\cos(x)} --- an equivalent of 1

\sec(x)csc(x) = \frac{1}{\cos(x)}*\frac{1}{\sin(x)} * \frac{\cos(x)}{\cos(x)}

\sec(x)csc(x) = \frac{1}{\cos^2(x)}*\frac{\cos(x)}{\sin(x)}

Express \frac{1}{\cos^2(x)}\ as\ \sec^2(x) and \frac{\cos(x)}{\sin(x)}\ as\ \frac{1}{\tan(x)}

\sec(x)csc(x) = \sec^2(x)*\frac{1}{\tan(x)}

\sec(x)csc(x) = \frac{\sec^2(x)}{\tan(x)}

In trigonometry:

tan^2(x) + 1 =\sec^2(x)

So, we have:

\sec(x)csc(x) = \frac{\tan^2(x) + 1}{\tan(x)}

Split

\sec(x)csc(x) = \frac{\tan^2(x)}{\tan(x)} + \frac{1}{\tan(x)}

Simplify

\sec(x)csc(x) = \tan(x) + \cot(x)  proved

Solving (D)

D.\ \frac{1 - (cos(x))^2}{cos(x)}

Open bracket

\frac{1 - (cos(x))^2}{cos(x)} = \frac{1 - cos^2(x)}{cos(x)}

1 - \cos^2(x) = \sin^2(x)

So, we have:

\frac{1 - (cos(x))^2}{cos(x)} = \frac{sin^2(x)}{cos(x)}

Split

\frac{1 - (cos(x))^2}{cos(x)} = \sin(x) * \frac{sin(x)}{cos(x)}

\frac{sin(x)}{\cos(x)} = \tan(x)

So, we have:

\frac{1 - (cos(x))^2}{cos(x)} = \sin(x) * \tan(x)

\frac{1 - (cos(x))^2}{cos(x)} = \sin(x) \tan(x) --- proved

Solving (E):

E.\ 2\sec(x)

In trigonometry

\sec(x)= \frac{1}{\cos(x)}

So, we have:

2\sec(x) = 2 * \frac{1}{\cos(x)}

2\sec(x) = \frac{2}{\cos(x)}

Multiply by \frac{1 - \sin(x)}{1 - \sin(x)} --- an equivalent of 1

2\sec(x) = \frac{2}{\cos(x)} * \frac{1 - \sin(x)}{1 - \sin(x)}

2\sec(x) = \frac{2(1 - \sin(x))}{(1 - \sin(x))\cos(x)}

Open bracket

2\sec(x) = \frac{2 - 2\sin(x)}{(1 - \sin(x))\cos(x)}

Express 2 as 1 + 1

2\sec(x) = \frac{1+1 - 2\sin(x)}{(1 - \sin(x))\cos(x)}

Express 1 as \sin^2(x) + \cos^2(x)

2\sec(x) = \frac{\sin^2(x) + \cos^2(x)+1 - 2\sin(x)}{(1 - \sin(x))\cos(x)}

Rewrite as:

2\sec(x) = \frac{\cos^2(x)+1 - 2\sin(x)+\sin^2(x)}{(1 - \sin(x))\cos(x)}

Expand

2\sec(x) = \frac{\cos^2(x)+1 - \sin(x)- \sin(x)+\sin^2(x)}{(1 - \sin(x))\cos(x)}

Factorize

2\sec(x) = \frac{\cos^2(x)+1(1 - \sin(x))- \sin(x)(1-\sin(x))}{(1 - \sin(x))\cos(x)}

Factor out 1 - sin(x)

2\sec(x) = \frac{\cos^2(x)+(1- \sin(x))(1-\sin(x))}{(1 - \sin(x))\cos(x)}

Express as squares

2\sec(x) = \frac{\cos^2(x)+(1-\sin(x))^2}{(1 - \sin(x))\cos(x)}

Split

2\sec(x) = \frac{\cos^2(x)}{(1 - \sin(x))\cos(x)} +\frac{(1-\sin(x))^2}{(1 - \sin(x))\cos(x)}

Cancel out like factors

2\sec(x) = \frac{\cos(x)}{1 - \sin(x)} +\frac{1-\sin(x)}{\cos(x)} --- proved

You might be interested in
The ratio of flour to sugar in a recipe is 3
Maru [420]

Answer:

10 cups of sugar are required in order to make cookies

3 0
3 years ago
On a map, 0.25 inches represents 1 mile. What is the area of a rectangle on the map that is 3.75 inches long and 2.25 inches wid
Murljashka [212]
8.4375 inches^2. You multiply 3.75 to 2.25 to get 8.4376.
7 0
3 years ago
HELP ME PLEASEEEEE i need this now
OleMash [197]

Answer:

195 yd^2

Step-by-step explanation:

Formula: A = \frac{pq}{2}

p = 7.5 + 7.5 = 15

q = 13 + 13 = 26

A = \frac{26*15}{2}

A = 195

5 0
3 years ago
Read 2 more answers
If f(x)=2x-1 And g(x) =3x which statement is true
alisha [4.7K]
I cant see any statements
6 0
4 years ago
Janet saved 22 dollars one moth and 39 dollars the next month. She wants to buy A bicycle that cost $100. How much more money do
mel-nik [20]
So total she saved 22+39 so far. That's 61 dollars in total (22+39=20+41=61).

She needs 100 dollars total, but she has 61 already, so she only needs 100-61=39 more: she needs 39 dollars more.
8 0
4 years ago
Read 2 more answers
Other questions:
  • What is the simplest form of 9/24
    7·2 answers
  • Kevin uses 2/3 cup og flour to make 2 servings of biscuits. How many cups of flour are there per serving? How many cups of flour
    8·1 answer
  • What is 8 divide by 4,377
    11·1 answer
  • Six bananas will be selected from a group of 13. in how many ways can this be done?
    14·1 answer
  • A deep-sea exploring ship is pulling up a diver at the rate of 15 feet per minute. The diver is 247 feet below sea level. How de
    6·1 answer
  • Help meeeeeeeeeeeeeee​
    15·1 answer
  • QUESTION 8,9,10,11, PLEASE DO ALL OF THEM I WILL MARK BRAINIST!!!
    14·2 answers
  • Need this ASAP thanks
    6·1 answer
  • Y=2x-2.5 plz help its due today
    6·2 answers
  • 2) Michael purchased a used car for $6,150 and had to pay 6.5% sales tax. How much tax
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!