Answer:
83.64%.
Explanation:
∵ The percent yield = (actual yield/theoretical yield)*100.
actual yield of CO₂ = 2300 g.
- We need to find the theoretical yield of CO₂:
For the reaction:
<em>CH₄ + 2O₂ → 2H₂O + CO₂,</em>
1.0 mol of CH₄ react with 2 mol of O₂ to produce 2 mol of H₂O and 1.0 mol of CO₂.
- Firstly, we need to calculate the no. of moles of 1000 g of CH₄ using the relation:
<em>no. of moles of CH₄ = mass/molar mass</em> = (1000 g)/(16.0 g/mol) = <em>62.5 mol.</em>
<u><em>Using cross-multiplication:</em></u>
1.0 mol of CH₄ produces → 1.0 mol of CO₂, from stichiometry.
∴ 62.5 mol of CH₄ produces → 62.5 mol of CO₂.
- We can calculate the theoretical yield of carbon dioxide gas using the relation:
∴ The theoretical yield of CO₂ gas = n*molar mass = (62.5 mol)(44.0 g/mol) = 2750 g.
<em>∵ The percent yield = (actual yield/theoretical yield)*100.</em>
actual yield = 2300 g, theoretical yield = 2750 g.
<em>∴ the percent yield</em> = (2300 g/2750 g)*100 = <em>83.64%.</em>
No, it can be Igneous rock as well
Answer:
chemical changes that happen when food goes bad. All food will eventually rot if not eaten, but keeping the food cold slows the rotting process. Chemical changes are affected by temperature. More heat or energy (a higher temperature) usually allows for faster chemical changes.
Explanation: