Answer:
99.89% of students scored below 95 points.
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:

What percent of students scored below 95 points?
This is the pvalue of Z when X = 95. So



has a pvalue of 0.9989.
99.89% of students scored below 95 points.
Answer:
I think it's false.
Step-by-step explanation:
The following is the rest of the question:
------------------------------------------------------
Mikey's results showed that although both mice gained weight over the
month, mouse 2 gained more weight than mouse 1.Which graph below best
shows these results?
The complete figure is attached
=========================================================
Solution:
---------------
Graph (1)⇒⇒⇒ mouse 2 has constant weight and mouse 1 gained weight
Graph (3)⇒⇒⇒ mouse 2 has did not gain weight and mouse 1 gained weight
∴ Graph (1) and (3) are incorrect because both mice gained weight .
Graph (4) is incorrect because mouse 2 gained more weight than mouse 1
So, the correct answer is graph (2)
Answer:
x=-1
Step-by-step explanation:
y=kx
18=-3*k
k=-6
6=x*-6
x=-1
Answer:
A. is the correct answer tnx to the points