Answer:
Part 1) The exact value of the arc length is \frac{25}{6}\pi \ in
Part 2) The approximate value of the arc length is 13.1\ in
Step-by-step explanation:
ind the circumference of the circle
The circumference of a circle is equal to
C=2\pi r
we have
r=5\ in
substitute
C=2\pi (5)
C=10\pi\ in
step 2
Find the exact value of the arc length by a central angle of 150 degrees
Remember that the circumference of a circle subtends a central angle of 360 degrees
by proportion
\frac{10\pi}{360} =\frac{x}{150}\\ \\x=10\pi *150/360\\ \\x=\frac{25}{6}\pi \ in
Find the approximate value of the arc length
To find the approximate value, assume
\pi =3.14
substitute
\frac{25}{6}(3.14)=13.1\ in
4 divide 4/9
4 times 9/4
= 9
Answer:
Step-by-step explanation:

The answer is 5.6 and for some reason I need to answer with 20 character so here you go
If the first function is
.. h(x) = 2^x
it will be the one that grows the fastest. The exponential function with the largest base value will grow faster than any polynomial.