Given:
The cost of each carnival ticket is $5.
To find:
The equation, table of values and graph for the given problem.
Solution:
Let x be the number of tickets and y be the total money spent on tickets.
Cost of one ticket = $5
Cost of x tickets = $5x
So, total cost is

The required equation is
.
At x=1,


At x=2,


At x=3,


The required table of values is
x y
1 5
2 10
3 15
So, the required table of values is table A.
From the above table, it is clear that the graph passes through the point (1,5), (2,10) and (3,15). The graph B passes through these points.
So, the required graph is graph B.
Since the required answers are
, table A, graph B, therefore the correct option is B.
Answer:
(2x+1)(x+3)
Step-by-step explanation:
Not much explaining for that...
Answer:
See proof below
Step-by-step explanation:
An equivalence relation R satisfies
- Reflexivity: for all x on the underlying set in which R is defined, (x,x)∈R, or xRx.
- Symmetry: For all x,y, if xRy then yRx.
- Transitivity: For all x,y,z, If xRy and yRz then xRz.
Let's check these properties: Let x,y,z be bit strings of length three or more
The first 3 bits of x are, of course, the same 3 bits of x, hence xRx.
If xRy, then then the 1st, 2nd and 3rd bits of x are the 1st, 2nd and 3rd bits of y respectively. Then y agrees with x on its first third bits (by symmetry of equality), hence yRx.
If xRy and yRz, x agrees with y on its first 3 bits and y agrees with z in its first 3 bits. Therefore x agrees with z in its first 3 bits (by transitivity of equality), hence xRz.
Solve.
<span>Mr. Madison picked 80 pieces of fruit on Thursday.</span>Add.
<span>042412+ 40<span>80
</span></span>