Answer:
C
Step-by-step explanation:
To make it easy let's start by organizing our information :
- AC=12 AND BD=8
- ABCD is a rhombus
- K and L are the midpoints of sides AD and CD
- we notice that the rhombus ABCD is divided into four right triangles
What do you think of when you hear a right triangle ?
- The pythagorian theorem !
AC and BD are khown so let's focus on them .
If we concentrated we can notice that AB and BD are cossing each other in the midpoints . why ?
Simply because they are the diagonals of a rhombus .
ow let's apply the pythagorian theorem :
- (AC/2)² + (BD/2)² = BC²
- 6²+4²=52
- BC²= 52⇒
=BC
Now we khow that : AB=BC=CD=AD=
This isn't enough . Let's try to figure out a way to calculate the length of KL wich is the base of the triangle
- KL is parallel to AC
- k is the midpoint of AD and L of DC
I smell something . yes! Thales theorem
- KL/AC=DL/DC=DK/AD WE4LL TAKE OLY ONE
- KL/12=
/2*
- KL/12=1/2⇒ KL=6
Now we have the length of the base kl
Now the big boss the height :
- notice that you khow the length of KL
- BD crosses kl from its midpoint and DL =
/2
What I want to do is to apply the pythgorian thaorem to khow the lenght of that small part that is not a part of the height of the triangle . I will call it D
- DL²=(KL/2)²+D²
- 52/4= 9+ D²
- D² = 52/4-9 +4 SO D=2
now the height of the trigle is H= BD-D= 8-2=6
NOw the area of the triangle is :
- A=(KL*H)/2 ⇒ A= (6*6)/2=18
THE ANSWER IS 18 SQ.UN
Answer:
-1, 0, 0.1, 1
Step-by-step explanation:
-1 is a negative value, which makes it before 0
0.1 is less than 1 but more than 0
Answer:
1.26 x 10^(24)
Step-by-step explanation:
hope this helped
In order for the system to have an infinite number of solutions, both equations must be identical. So, the value of b must be 6
21−=2(2−)=2cos(−1)+2 sin(−1)
−1+2=−1(2)=−1(cos2+sin2)=cos2+ sin2
Is the above the correct way to write 21− and −1+2 in the form +? I wasn't sure if I could change Euler's formula to =cos()+sin(), where is a constant.
complex-numbers
Share
Cite
Follow
edited Mar 6 '17 at 4:38
Richard Ambler
1,52199 silver badges1616 bronze badges
asked Mar 6 '17 at 3:34
14wml
23122 silver badges99 bronze badges
Add a comment
1 Answer
1
No. It is not true that =cos()+sin(). Notice that
1=1≠cos()+sin(),
for example consider this at =0.
As a hint for figuring this out, notice that
+=ln(+)
then recall your rules for logarithms to get this to the form (+)ln().