Answer:
Annual: $302 737.50
Continuous: $332 507.52
Step-by-step explanation:
A. Compounded annually
The formula for <em>compound interest</em> is
A = P(1 + r)ⁿ
Data:
P = $45 000
r = 10 %
t = 20 yr
Calculations:
n = 20
A = 45 000(1+ 0.10)²⁰
= 45 000 × 1.10²⁰
= 45 000 × 6.727 499 95
= $302 737.50
B. Compounded continuously
The formula for <em>continuously compounded inerest</em> is



= 45 000 × 7.389 056 61
= $332 507.52
Answer is in the file below
tinyurl.com/wpazsebu
Answer:
-(5 n + 6)
Step-by-step explanation:
Simplify the following:
-4 (n + 1) - (n + 2)
-4 (n + 1) = -4 n - 4:
-4 n - 4 - (n + 2)
-(n + 2) = -n - 2:
-4 - 4 n + -n - 2
Grouping like terms, -4 - 4 n - 2 - n = (-4 n - n) + (-4 - 2):
(-4 n - n) + (-4 - 2)
-4 n - n = -5 n:
-5 n + (-4 - 2)
-4 - 2 = -(4 + 2):
-5 n + -(4 + 2)
4 + 2 = 6:
-5 n - 6
Factor -1 out of -5 n - 6:
Answer: -(5 n + 6)
D is halfway between A and B
so the coordinates of D are (2,2)
E is halfway between A and C so the coordinates of E are (-1,1)
now you need to find the gradient/slope of DE and BC using the formula:

<h3>
<u>G</u><u>r</u><u>a</u><u>d</u><u>i</u><u>e</u><u>n</u><u>t</u><u> </u><u>o</u><u>f</u><u> </u><u>D</u><u>E</u><u>:</u><u> </u></h3>
SUB IN COORDINATES OF D AND E

therefore the gradient of DE is 1/3.
<h3>
<u>G</u><u>r</u><u>a</u><u>d</u><u>i</u><u>e</u><u>n</u><u>t</u><u> </u><u>o</u><u>f</u><u> </u><u>B</u><u>C</u><u>:</u></h3>
<em>S</em><em>U</em><em>B</em><em> </em><em>I</em><em>N</em><em> </em><em>C</em><em>O</em><em>O</em><em>R</em><em>D</em><em>I</em><em>N</em><em>A</em><em>T</em><em>E</em><em>S</em><em> </em><em>O</em><em>F</em><em> </em><em>B</em><em> </em><em>A</em><em>N</em><em>D</em><em> </em><em>C</em>
<em>
</em>
therefore the gradient of BC is -2/-6 which simplifies to 1/3.
<h3>
therefore, BC and DE are parallel as they both have a gradient/slope of 1/3 and parallel lines have the same gradient</h3>
<h3>I hope it helps you see the attachment below</h3>
Step-by-step explanation:
<h2>
#Princesses Rule</h2>