3/2 since perpendicular lines have opposite reciprocal slopes
Step-by-step explanation:
Use the quadratic formula
=
−
±
2
−
4
√
2
x=\frac{-{\color{#e8710a}{b}} \pm \sqrt{{\color{#e8710a}{b}}^{2}-4{\color{#c92786}{a}}{\color{#129eaf}{c}}}}{2{\color{#c92786}{a}}}
x=2a−b±b2−4ac
Once in standard form, identify a, b and c from the original equation and plug them into the quadratic formula.
2
2
+
6
+
4
=
0
2x^{2}+6x+4=0
2x2+6x+4=0
=
2
a={\color{#c92786}{2}}
a=2
=
6
b={\color{#e8710a}{6}}
b=6
=
4
c={\color{#129eaf}{4}}
c=4
=
−
6
±
6
2
−
4
⋅
2
⋅
4
√
2
⋅
2
x=\frac{-{\color{#e8710a}{6}} \pm \sqrt{{\color{#e8710a}{6}}^{2}-4 \cdot {\color{#c92786}{2}} \cdot {\color{#129eaf}{4}}}}{2 \cdot {\color{#c92786}{2}}}
x=2⋅2−6±62−4⋅2⋅4
brainliest and follow and thanks
Answer: Third option is correct.
Step-by-step explanation:
Since we have given that
There is a cyclic quadrilateral.
As we know that "Sum of opposite angles in a cyclic quadrilateral is supplementary.":
so, it becomes,
Hence, the measure of ∠1 = 94°
Therefore, Third option is correct.
Given:
Expression is
To prove:
If r is any rational number, then is rational.
Step-by-step explanation:
Property 1: Every integer is a rational number. It is Theorem 4.3.1.
Property 2: The sum of any two rational numbers is rational. It is Theorem 4.3.2.
Property 3: The product of any two rational numbers is rational. It is Exercise 15 in Section 4.3.
Let r be any rational number.
We have,
It can be written as
Now,
3, -2 and 4 are rational numbers by property 1.
is rational by Property 3.
are rational by Property 3.
is rational by property 2.
So, is rational.
Hence proved.