The first one is C and the second one is B
The distance between the tree and the tower is 30√3m.
Justification:
<u>Let the situation be in a right angleABC form as shown in attached figure</u>.
<u>Given the height of the tower is 30m and the angle of depression to the base of the tree measure 30°</u>.
So, In ΔABC
tanθ = p/b
tan30° = 30/BC
1/√3 = 30/BC
BC = 30√3m.
My best possible answer choice should be B
The height of the tunnel 5 feet from the edge is 13.82 feet option second 13.82 feet is correct.
<h3>What is an ellipse?</h3>
An ellipse is a locus of a point that moves in a plane such that the sum of its distances from the two points called focus adds up to a constant. It is taken from the cone by cutting it at an angle.
We have:
A tunnel is constructed with a semi-elliptical arch. The width of the tunnel is 60 feet, and the maximum height at the center of the tunnel is 25 feet.
2a = 60 (width of the tunnel is 60 feet)
a = 30
And the maximum height at the center of the tunnel is 25 feet
b = 25
Let's assume the center of the ellipse is at the origin.
So the equation of the ellipse:
![\rm \dfrac{x^2}{30^2}+\dfrac{y^2}{25^2}=1](https://tex.z-dn.net/?f=%5Crm%20%5Cdfrac%7Bx%5E2%7D%7B30%5E2%7D%2B%5Cdfrac%7By%5E2%7D%7B25%5E2%7D%3D1)
Now plug x = a - 5 = 30 - 5 = 25
![\rm \dfrac{25^2}{30^2}+\dfrac{y^2}{25^2}=1](https://tex.z-dn.net/?f=%5Crm%20%5Cdfrac%7B25%5E2%7D%7B30%5E2%7D%2B%5Cdfrac%7By%5E2%7D%7B25%5E2%7D%3D1)
After solving:
![\rm \dfrac{y^2}{25^2}=1-\dfrac{25}{36}](https://tex.z-dn.net/?f=%5Crm%20%5Cdfrac%7By%5E2%7D%7B25%5E2%7D%3D1-%5Cdfrac%7B25%7D%7B36%7D)
![\rm y^2=\dfrac{6875}{36}](https://tex.z-dn.net/?f=%5Crm%20y%5E2%3D%5Cdfrac%7B6875%7D%7B36%7D)
y = ±13.819 ≈ ±13.82
Height cannot be negative
y = 13.82 feet
Thus, the height of the tunnel 5 feet from the edge is 13.82 feet option second 13.82 feet is correct.
Learn more about the ellipse here:
brainly.com/question/19507943
#SPJ1
Answer:
Step-by-step explanation:
![A_{sector} = \frac{ \theta}{360 \degree} \times \pi {r}^{2} \\ \\ A_{sector} = \frac{144 \degree}{360 \degree} \times 3.14 \times {(8)}^{2} \\ \\ A_{sector} = 0.4 \times 3.14 \times {(8)}^{2} \\ \\ A_{sector} = 80.384 \\ \\ A_{sector} \approx \: 80.38 \: {ft}^{2}](https://tex.z-dn.net/?f=%20A_%7Bsector%7D%20%20%3D%20%20%5Cfrac%7B%20%5Ctheta%7D%7B360%20%5Cdegree%7D%20%20%5Ctimes%20%5Cpi%20%7Br%7D%5E%7B2%7D%20%5C%5C%20%20%5C%5C%20A_%7Bsector%7D%20%20%3D%20%20%5Cfrac%7B144%20%5Cdegree%7D%7B360%20%5Cdegree%7D%20%20%5Ctimes%203.14%20%5Ctimes%20%20%7B%288%29%7D%5E%7B2%7D%20%20%5C%5C%20%20%5C%5C%20A_%7Bsector%7D%20%20%3D%20%200.4%20%5Ctimes%203.14%20%5Ctimes%20%20%7B%288%29%7D%5E%7B2%7D%20%20%5C%5C%20%20%5C%5C%20%20A_%7Bsector%7D%20%3D%2080.384%20%5C%5C%20%20%5C%5C%20%20A_%7Bsector%7D%20%5Capprox%20%5C%3A%2080.38%20%5C%3A%20%20%7Bft%7D%5E%7B2%7D%20)