Answer:
Step-by-step explanation:
roots of a complex number is given by DeMoivre's formula.
![\sf \boxed{\bf r^{\frac{1}{n}}\left[Cos \dfrac{\theta + 2\pi k}{n}+i \ Sin \ \dfrac{\theta+2\pi k}{n}\right]}](https://tex.z-dn.net/?f=%5Csf%20%5Cboxed%7B%5Cbf%20r%5E%7B%5Cfrac%7B1%7D%7Bn%7D%7D%5Cleft%5BCos%20%5Cdfrac%7B%5Ctheta%20%2B%202%5Cpi%20k%7D%7Bn%7D%2Bi%20%5C%20Sin%20%5C%20%5Cdfrac%7B%5Ctheta%2B2%5Cpi%20k%7D%7Bn%7D%5Cright%5D%7D)
Here, k lies between 0 and (n -1) ; n is the exponent.
![\sf -1 + i\sqrt{3}](https://tex.z-dn.net/?f=%5Csf%20-1%20%2B%20i%5Csqrt%7B3%7D)
a = -1 and b = √3
![\sf \boxed{r=\sqrt{a^2+b^2}} \ and \ \boxed{\theta = Tan^{-1} \ \dfrac{b}{a}}](https://tex.z-dn.net/?f=%5Csf%20%5Cboxed%7Br%3D%5Csqrt%7Ba%5E2%2Bb%5E2%7D%7D%20%5C%20and%20%5C%20%5Cboxed%7B%5Ctheta%20%3D%20Tan%5E%7B-1%7D%20%5C%20%5Cdfrac%7Bb%7D%7Ba%7D%7D)
![\sf r = \sqrt{(-1)^2 + 3^2}\\\\ = \sqrt{1+9}\\\\=\sqrt{10}](https://tex.z-dn.net/?f=%5Csf%20r%20%3D%20%5Csqrt%7B%28-1%29%5E2%20%2B%203%5E2%7D%5C%5C%5C%5C%20%3D%20%5Csqrt%7B1%2B9%7D%5C%5C%5C%5C%3D%5Csqrt%7B10%7D)
![\sf \theta = tan^{-1} \ \dfrac{\sqrt{3}}{-1}\\\\ = tan^{-1} \ (-\sqrt{3})](https://tex.z-dn.net/?f=%5Csf%20%5Ctheta%20%3D%20tan%5E%7B-1%7D%20%5C%20%5Cdfrac%7B%5Csqrt%7B3%7D%7D%7B-1%7D%5C%5C%5C%5C%20%3D%20tan%5E%7B-1%7D%20%5C%20%28-%5Csqrt%7B3%7D%29)
![\sf = \dfrac{-\pi }{3}](https://tex.z-dn.net/?f=%5Csf%20%3D%20%5Cdfrac%7B-%5Cpi%20%7D%7B3%7D)
n = 4
For k = 0,
![\sf z = \sqrt[4]{10}\left[Cos \ \dfrac{\dfrac{-\pi}{3} +0}{4}+iSin \ \dfrac{\dfrac{-\pi}{3}+0}{4}\right] \\\\\\z= \sqrt[4]{10} \left[Cos \ \dfrac{ -\pi }{12}+iSin \ \dfrac{-\pi}{12}\right]\\\\\\z = \sqrt[4]{10}\left[-Cos \ \dfrac{\pi}{12}-i \ Sin \ \dfrac{\pi}{12}\right]](https://tex.z-dn.net/?f=%5Csf%20z%20%3D%20%5Csqrt%5B4%5D%7B10%7D%5Cleft%5BCos%20%5C%20%5Cdfrac%7B%5Cdfrac%7B-%5Cpi%7D%7B3%7D%20%2B0%7D%7B4%7D%2BiSin%20%20%5C%20%5Cdfrac%7B%5Cdfrac%7B-%5Cpi%7D%7B3%7D%2B0%7D%7B4%7D%5Cright%5D%20%5C%5C%5C%5C%5C%5Cz%3D%20%5Csqrt%5B4%5D%7B10%7D%20%5Cleft%5BCos%20%5C%20%5Cdfrac%7B%20-%5Cpi%20%20%7D%7B12%7D%2BiSin%20%20%5C%20%5Cdfrac%7B-%5Cpi%7D%7B12%7D%5Cright%5D%5C%5C%5C%5C%5C%5Cz%20%3D%20%5Csqrt%5B4%5D%7B10%7D%5Cleft%5B-Cos%20%5C%20%5Cdfrac%7B%5Cpi%7D%7B12%7D-i%20%5C%20Sin%20%5C%20%5Cdfrac%7B%5Cpi%7D%7B12%7D%5Cright%5D)
For k =1,
![\sf z = \sqrt[4]{10}\left[Cos \ \dfrac{5\pi}{12}+i \ Sin \ \dfrac{5\pi}{12}\right]](https://tex.z-dn.net/?f=%5Csf%20z%20%3D%20%5Csqrt%5B4%5D%7B10%7D%5Cleft%5BCos%20%5C%20%5Cdfrac%7B5%5Cpi%7D%7B12%7D%2Bi%20%5C%20Sin%20%5C%20%5Cdfrac%7B5%5Cpi%7D%7B12%7D%5Cright%5D)
For k =2,
![z = \sqrt[4]{10}\left[Cos \ \dfrac{11\pi}{12}+i \ Sin \ \dfrac{11\pi}{12}\right]](https://tex.z-dn.net/?f=z%20%3D%20%5Csqrt%5B4%5D%7B10%7D%5Cleft%5BCos%20%5C%20%5Cdfrac%7B11%5Cpi%7D%7B12%7D%2Bi%20%5C%20Sin%20%5C%20%5Cdfrac%7B11%5Cpi%7D%7B12%7D%5Cright%5D)
For k = 3,
![\sf z = \sqrt[4]{10}\left[Cos \ \dfrac{17\pi}{12}+i \ Sin \ \dfrac{17\pi}{12}\right]](https://tex.z-dn.net/?f=%5Csf%20z%20%3D%20%5Csqrt%5B4%5D%7B10%7D%5Cleft%5BCos%20%5C%20%5Cdfrac%7B17%5Cpi%7D%7B12%7D%2Bi%20%5C%20Sin%20%5C%20%5Cdfrac%7B17%5Cpi%7D%7B12%7D%5Cright%5D)
For k = 4,
![\sf z =\sqrt[4]{10}\left[Cos \ \dfrac{23\pi}{12}+i \ Sin \ \dfrac{23\pi}{12}\right]](https://tex.z-dn.net/?f=%5Csf%20z%20%3D%5Csqrt%5B4%5D%7B10%7D%5Cleft%5BCos%20%5C%20%5Cdfrac%7B23%5Cpi%7D%7B12%7D%2Bi%20%5C%20Sin%20%5C%20%5Cdfrac%7B23%5Cpi%7D%7B12%7D%5Cright%5D)
Answer: a) ![N(t)=1500(2)^t](https://tex.z-dn.net/?f=N%28t%29%3D1500%282%29%5Et)
b) 25165824000
Step-by-step explanation:
The exponential equation for growth is given by :-
, where a= initial value , b =multiplicative growth factor and t = time.
Given : A bacteria culture contains 1500 bacteria initially and doubles every hour.
i.e. a = 1500 and b= 2
Then, the function N that models the number of bacteria after t hours will be :
To find , the number of bacteria after 24 hours , we put t= 24 in above equation , we get
Hence, the number of bacteria after 24 hours is 25165824000.
When you are looking for a unit rate in a graph you want to know how much the dependent (y) variable will increase by when the independent (x) variable is increased by one
Answer:
area of triangle : 1/2 x length x widht