Answer:
p = x² − 6x + 10
Step-by-step explanation:
Complex roots come in conjugate pairs. So if 3−i is a root, then 3+i is also a root.
p = (x − (3−i)) (x − (3+i))
p = x² − (3+i)x − (3−i)x + (3−i)(3+i)
p = x² − 3x − ix − 3x + ix + (9 − i²)
p = x² − 6x + 10
You can check your answer using the quadratic formula.
x = [ -b ± √(b² − 4ac) ] / 2a
x = [ 6 ± √(36 − 40) ] / 2
x = (6 ± 2i) / 2
x = 3 ± i
Answer:
7y² - y + 21
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Distributive Property
<u>Algebra I</u>
Step-by-step explanation:
<u>Step 1: Define</u>
4y - y(3 - 7y) + 5 + 2(8 - y)
<u>Step 2: Simplify</u>
- [Distributive Property] Distribute parenthesis: 4y - 3y + 7y² + 5 + 16 - 2y
- Combine like terms (y): 7y² - y + 5 + 16
- Combine like terms: 7y² - y + 21