The situation can be modeled by a geometric sequence with an initial term of 284. The student population will be 104% of the prior year, so the common ratio is 1.04.
Let \displaystyle PP be the student population and \displaystyle nn be the number of years after 2013. Using the explicit formula for a geometric sequence we get
{P}_{n} =284\cdot {1.04}^{n}P
n
=284⋅1.04
n
We can find the number of years since 2013 by subtracting.
\displaystyle 2020 - 2013=72020−2013=7
We are looking for the population after 7 years. We can substitute 7 for \displaystyle nn to estimate the population in 2020.
\displaystyle {P}_{7}=284\cdot {1.04}^{7}\approx 374P
7
=284⋅1.04
7
≈374
The student population will be about 374 in 2020.
What's your favorite food or drink?
Answer: 0.31 is the decimal form of 31%
Step-by-step explanation:
Answer:
3
Step-by-step explanation:
3 squared is 9. 5 squared is 25. 25 + 9 = 34. 5 + 3 = 8. So the smaller number is 3.
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions here.
Below is the solution:
xdy/dx = 4y
<span>xdy = 4ydx </span>
<span>∫ dy/y =∫ 4dx/x </span>
<span>ln(y) = 4ln(x) + C </span>
<span>y = e^[4ln(x)] e^C </span>
<span>y = e^[ln(x)^4] e^C </span>
<span>y = Cx^4 answer</span>