The answer to this question is 22
Answer:
Using a formula, the standard error is: 0.052
Using bootstrap, the standard error is: 0.050
Comparison:
The calculated standard error using the formula is greater than the standard error using bootstrap
Step-by-step explanation:
Given
Sample A Sample B


Solving (a): Standard error using formula
First, calculate the proportion of A



The proportion of B



The standard error is:







Solving (a): Standard error using bootstrapping.
Following the below steps.
- Open Statkey
- Under Randomization Hypothesis Tests, select Test for Difference in Proportions
- Click on Edit data, enter the appropriate data
- Click on ok to generate samples
- Click on Generate 1000 samples ---- <em>see attachment for the generated data</em>
From the randomization sample, we have:
Sample A Sample B



So, we have:






Answer:
the correct answer is 4 and 21
Step-by-step explanation:
the quotient of a number and 3 is 6
Solution,
Let the number be x, then

<span>Assuming that the particle is the 3rd
particle, we know that it’s location must be beyond q2; it cannot be between q1
and q2 since both fields point the similar way in the between region (due to
attraction). Choosing an arbitrary value of 1 for L, we get </span>
<span>
k q1 / d^2 = - k q2 / (d-1)^2 </span>
Rearranging to calculate for d:
<span> (d-1)^2/d^2 = -q2/q1 = 0.4 </span><span>
<span> d^2-2d+1 = 0.4d^2 </span>
0.6d^2-2d+1 = 0
d = 2.72075922005613
d = 0.612574113277207 </span>
<span>
We pick the value that is > q2 hence,</span>
d = 2.72075922005613*L
<span>d = 2.72*L</span>