Answer:
m<ABC = 45
m<DBC = 34°
Step-by-step explanation:
Given:
m<ABD = 79°
m<ABC = (8x - 3)°
m<DBC = (5x + 4)°
Step 1: Generate an equation to find the value of x
m<ABC + m<DBC = m<ABD (angle addition postulate)
(8x - 3) + (5x + 4) = 79
Solve for x
8x - 3 + 5x + 4 = 79
13x + 1 = 79
Subtract 1 from both sides
13x + 1 - 1 = 79 - 1
13x = 78
Divide both sides by 13
x = 6
Step 2: find m<ABC and m<DBC by plugging the value of x into the expression of each angle
m<ABC = (8x - 3)°
m<ABC = 8(6) - 3 = 48 - 3 = 45°
m<DBC = (5x + 4)°
m<DBC = 5(6) + 4 = 30 + 4 = 34°
Huh? Are you missing the something
The tower is 61.65 meters tall.
<u>SOLUTION:
</u>
Given that, a pole that is 2.5 m tall casts a shadow that is 1.47 m long.
At the same time, a nearby tower casts a shadow that is 36.25 m long.
We have to find height of the tower.
Now, we know that,

Then, (let it be) n meter tall
36.25 long shadow
So, by cross multiplication method,

This can be written as,

Cross multiplications steps: (To find Single Variable)
- Multiply the numerator of the left-hand fraction by the denominator of the right-hand fraction.
- Multiply the numerator of the right-hand fraction by the denominator of the left-hand fraction.
- Set the two products equal to each other.
- Solve for the variable.
Hello from MrBillDoesMath!
Answer:
1/ 91.4
Discussion:
Evaluate 1/ ( 3x^3 + 5.2y) when x = 3, y = 2.
1/ (3 (3)^3 + 5.2(2)) =
1/ ( 3 * 27 + 10.4) =
1/ ( 81 + 10.4) =
1/ (91.4) =
.0109 (approx)
Thank you,
MrB