The first step to solving this expression is to factor out the perfect cube
![\sqrt[3]{m^{2} n^{3} X n^{2} }](https://tex.z-dn.net/?f=%20%5Csqrt%5B3%5D%7Bm%5E%7B2%7D%20%20n%5E%7B3%7D%20X%20n%5E%7B2%7D%20%20%20%7D%20)
The root of a product is equal to the product of the roots of each factor. This will make the expression look like the following:
![\sqrt[3]{ m^{2} n^{2} }](https://tex.z-dn.net/?f=%20%5Csqrt%5B3%5D%7B%20m%5E%7B2%7D%20n%5E%7B2%7D%20%20%7D%20)
Finally,, reduce the index of the radical and exponent with 3
n
![\sqrt[3]{ m^{2} n^{2} }](https://tex.z-dn.net/?f=%20%5Csqrt%5B3%5D%7B%20m%5E%7B2%7D%20n%5E%7B2%7D%20%20%7D%20)
This means that the correct answer to your question is n
![\sqrt[3]{ m^{2} n^{2} }](https://tex.z-dn.net/?f=%20%5Csqrt%5B3%5D%7B%20m%5E%7B2%7D%20n%5E%7B2%7D%20%7D%20)
.
Let me know if you have any further questions
:)
Answer:
a=2.5
Step-by-step explanation:
3a-2.4=5.1 Add the like terms ( plus 2.4 cancels out -2.4)
+2.4 +2.4
3a=7.5 Now divide by 3
/3 /3
a=2.5
Answer:
1/4 chances
Step-by-step explanation:
its like rolling a dice. Six sides, Six different numbers, one will be picked
GCF = -c^2d^3
Factors are -c^2d^3(8c^3d^3 + 27c^2d + 24)