1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
exis [7]
3 years ago
7

What number is 27% of 52? Round to the nearest tenth if necessary.

Mathematics
2 answers:
Fittoniya [83]3 years ago
7 0
27% of 52 is 14
Hope this helps. Brainliest?
Varvara68 [4.7K]3 years ago
6 0

Answer: 14.04

Step-by-step explanation: Rounded also to 14.00.

Please brainliest!

You might be interested in
Evaluate the function when x=-1 g (x) = 3x square 2 + 1 ?
finlep [7]

Answer:

10

Step-by-step explanation:

X = -1 so, we have:

3·1² + 1

3² + 1

9 + 1

10

5 0
3 years ago
A=c+(-10) Solve for c in terms of other variables.
True [87]
To do this we need to move 10 to other side.  To accomplish this you just need to add 10 to both side since (-10) 

so 
A+ 10 = c -10 + 10 
we get
A+ 10 = c

lets say it wasn't -10 but positive 10. 

A = c + 10  then we would subtract 10 from both sides

A -10 = c + 10 - 10 
we get 
A  - 10 = C 
5 0
3 years ago
Two sides of a triangle have lengths of 7 ft and 15 fr. Which inequality represents the possible length for the third side, x?
Inessa05 [86]

6 < c < 20,

Of course if you knew the triangle was a right triangle you could use the Pythagorean theorem to directly get the size of the third side.
3 0
3 years ago
a collection of coins consist of nickels, dimes, and quarters. there are 3 fewer quarters than nickels and six more dimes than q
ZanzabumX [31]
There are 12 Nickels, 9 Quarters, and 15 Dimes.
7 0
3 years ago
The third-degree Taylor polynomial about x = 0 of In(1 - x) is
gizmo_the_mogwai [7]

Answer:

\displaystyle P_3(x) = -x - \frac{x^2}{2} - \frac{x^3}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Algebra I</u>

  • Functions
  • Function Notation

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative Rule [Quotient Rule]:                                                                                \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

MacLaurin/Taylor Polynomials

  • Approximating Transcendental and Elementary functions
  • MacLaurin Polynomial:                                                                                     \displaystyle P_n(x) = \frac{f(0)}{0!} + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + ... + \frac{f^{(n)}(0)}{n!}x^n
  • Taylor Polynomial:                                                                                            \displaystyle P_n(x) = \frac{f(c)}{0!} + \frac{f'(c)}{1!}(x - c) + \frac{f''(c)}{2!}(x - c)^2 + \frac{f'''(c)}{3!}(x - c)^3 + ... + \frac{f^{(n)}(c)}{n!}(x - c)^n

Step-by-step explanation:

*Note: I will not be showing the work for derivatives as it is relatively straightforward. If you request for me to show that portion, please leave a comment so I can add it. I will also not show work for elementary calculations.

<u />

<u>Step 1: Define</u>

<em>Identify</em>

f(x) = ln(1 - x)

Center: x = 0

<em>n</em> = 3

<u>Step 2: Differentiate</u>

  1. [Function] 1st Derivative:                                                                                  \displaystyle f'(x) = \frac{1}{x - 1}
  2. [Function] 2nd Derivative:                                                                                \displaystyle f''(x) = \frac{-1}{(x - 1)^2}
  3. [Function] 3rd Derivative:                                                                                 \displaystyle f'''(x) = \frac{2}{(x - 1)^3}

<u>Step 3: Evaluate Functions</u>

  1. Substitute in center <em>x</em> [Function]:                                                                     \displaystyle f(0) = ln(1 - 0)
  2. Simplify:                                                                                                             \displaystyle f(0) = 0
  3. Substitute in center <em>x</em> [1st Derivative]:                                                             \displaystyle f'(0) = \frac{1}{0 - 1}
  4. Simplify:                                                                                                             \displaystyle f'(0) = -1
  5. Substitute in center <em>x</em> [2nd Derivative]:                                                           \displaystyle f''(0) = \frac{-1}{(0 - 1)^2}
  6. Simplify:                                                                                                             \displaystyle f''(0) = -1
  7. Substitute in center <em>x</em> [3rd Derivative]:                                                            \displaystyle f'''(0) = \frac{2}{(0 - 1)^3}
  8. Simplify:                                                                                                             \displaystyle f'''(0) = -2

<u>Step 4: Write Taylor Polynomial</u>

  1. Substitute in derivative function values [MacLaurin Polynomial]:                 \displaystyle P_3(x) = \frac{0}{0!} + \frac{-1}{1!}x + \frac{-1}{2!}x^2 + \frac{-2}{3!}x^3
  2. Simplify:                                                                                                             \displaystyle P_3(x) = -x - \frac{x^2}{2} - \frac{x^3}{3}

Topic: AP Calculus BC (Calculus I/II)

Unit: Taylor Polynomials and Approximations

Book: College Calculus 10e

5 0
3 years ago
Other questions:
  • convert the following logarithmic equation to the equivalent exponential equation. Use the caret (^) to enter exponents. y=ln x
    7·1 answer
  • at right is graph of this situation predict how the line would change to present the average cost of gas in dicember of 2005 whe
    14·1 answer
  • What solid figure has 5 faces, 5 vertices, 8edges?
    8·2 answers
  • Need help with 4-7 and 10-12
    5·1 answer
  • Which phrase best describes a scatter plot in which variables are correlated with r=-0.19 ?
    6·2 answers
  • Classify the triangle according to the side length and angle measurement
    7·2 answers
  • Find x<br> 1) 3.38 <br> 2)13.99 <br> 3)12.59 <br> 4)16.09
    13·1 answer
  • Need help with this question I don't understand.
    15·2 answers
  • Can someone please help me with geometry. Honestly I need help. Let me know please! :)
    13·1 answer
  • Which of the following topics would you discuss first in a speech on applications of math in the everyday world?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!