Answer:
=x+2
Step-by-step explanation:
Step-by-step explanation:
step 1. the standard form of a quadratic equation is f(x) = ax^2 + bx + c
step 2. since they are all in standard form you need to provide more information.
Answer:
217 text messages
Step-by-step explanation:
1302/6 = 217
Answer:
P(A∪B) = 1/3
Step-by-step explanation:
Red Garments = 1 red shirt + 1 red hat + 1 red pairs of pants
Total Red Garments = 3
Green Garments = 1 green shirt + 1 green scarf + 1 green pairs of pants
Total Green Garments = 3
The total number of garments = Total Red Garments + Total Green Garments:
3 + 3 = 6
Let A be the event that he selects a green garment
P(A) = Number of required outcomes/Total number of possible outcomes
P(A) = 3/6
Let B be the event that he chooses a scarf
P(B) = 1/6
The objective here is to determine P(A or B) = P(A∪B)
Using the probability set notation theory:
P(A∪B) = P(A) + P(B) - P(A∩B)
P(A∩B) = Probability that a green pair of pant is chosen = P(A) - P(B)
= 3/6-1/6
= 2/6
P(A∪B) = 1/2 + 1/6 - 2/6
P(A∪B) = 2/6
P(A∪B) = 1/3
Answer:




Step-by-step explanation:
Given
See attachment for proper format of table
--- Sample
A = Supplier 1
B = Conforms to specification
Solving (a): P(A)
Here, we only consider data in sample 1 row.
In this row:
and 
So, we have:



P(A) is then calculated as:


Solving (b): P(B)
Here, we only consider data in the Yes column.
In this column:
and 
So, we have:



P(B) is then calculated as:


Solving (c): P(A n B)
Here, we only consider the similar cell in the yes column and sample 1 row.
This cell is: [Supplier 1][Yes]
And it is represented with; n(A n B)
So, we have:

The probability is then calculated as:


Solving (d): P(A u B)
This is calculated as:

This gives:

Take LCM

