Answer: PLATO
Step-by-step explanation:
HI THERE
9514 1404 393
Answer:
a) see the attached spreadsheet (table)
b) Calculate, for a 10-year horizon; Computate for a longer horizon.
c) Year 13; no
Step-by-step explanation:
a) The attached table shows net income projections for the two companies. Calculate's increases by 0.5 million each year; Computate's increases by 15% each year. The result is rounded to the nearest dollar.
__
b) After year 4, Computate's net income is increasing by more than 0.5 million per year, so its growth is faster and getting faster yet. However, in the first 10 years, Calculate's net income remains higher than that of Computate. If we presume that some percentage of net income is returned to investors, then Calculate may provide a better return on investment.
The scenario given here is only interested in the first 10 years. However, beyond that time frame (see part C), we find that Computate's income growth far exceeds that of Calculate.
__
c) Extending the table through year 13, we see that Computate's net income exceeds Calculate's in that year. It continues to remain higher as long as the model remains valid.
Given:
ratio of altitude height = 2/3
Required:
ratio of volume
Solution:
Assuming that the only difference that the cylinders has is the height, we can solve for the ratio of the volume.
The volume of a cylinder is equal to πr²×height.
ratio of volume = πr²×2/πr²×3
We cancel the pi and the r² since we assume that the cylinders have the same radius.By cancelling, we are left with:
ratio of volume = 2/3
Answer: The answer is (D) Reflection across the line y = -x.
Step-by-step explanation: In figure given in the question, we can see two triangles, ΔABC and ΔA'B'C' where the second triangle is the result of transformation from the first one.
(A) If we rotate ΔABC 180° counterclockwise about the origin, then the image will coincide with ΔA'B'C'. So, this transformation can take place here.
(B) If we reflect ΔABC across the origin, then also the image will coincide with ΔA'B'C' and so this transformation can also take place.
(C) If we rotate ΔABC through 180° clockwise about the origin, the we will see the image will be same as ΔA'B'C'. Hence, this transformation can also take place.
(D) Finally, if we reflect ΔABC across the line y = -x, the the image formed will be different from ΔA'B'C', in fact, it is ΔA'D'E', as shown in the attached figure. So, this transformation can not take place here.
Thus, the correct option is (D).