Answer:
Your answer is <em><u>B</u></em>
Step-by-step explanation:
i just did the test
(−∞,∞) Sorry I didn’t quite understand
Answer:
(-3,3)
Step-by-step explanation:
3x=36-15y and 11x =-78+15y
We move all x and y terms to the left hand side of the equation , so that we can apply elimination method
3x=36-15y , Add 15 y on both sides , 3x + 15y = 36
11x =-78+15y, subtract 15y on both sides, 11x -15y = -78
Now we add both equations
3x + 15y = 36
11x -15y = -78
------------------------
14x = -42
divide both sides by 14
x= -3
Now Plug in -3 for x in any one of the given equation
3x=36-15y
3(-3) = 36 - 15y
-9 = 36 - 15y
Subtract 36 on both sides
-45 = -15y
Divide both sides by -15
So y= 3
Answer is (-3,3)
Answer:
(x+10)(x+1)( x-3) ( x-3)
Step-by-step explanation:
root of 3 with multiplicity 2
( x-3) ^2 or ( x-3) ( x-3)
root of -10
(x- -10) is (x+10)
root of -1
(x - -1) is (x+1)
( x-3) ^2 (x+10)(x+1)
The lowest (or least) common denominator also written as LCD is the smallest of all the possible common denominators, where t<span>he </span>denominator<span> is the bottom number in a fraction.
</span>We should find the lowest common denominator of (p+3)/(p^2+7p+10) and <span>(p+5)/(p^2+5p+6).
</span><span>p^2+7p+10 can be written as a product: (p+5)(p+2)
</span>p^2+5p+6 <span>can be written as a product: (p+3)(p+2)
</span>So, we should find the LCD for (p+5)(p+2) and (p+3)(p+2). The smallest possible number that can be divided with both of them is:<span>(p + 5)(p + 2)(p + 3)
Solution C.</span>