Answer:

Step-by-step explanation:
<u>The full question:</u>
<em>"A committee has eleven members. there are 3 members that currently serve as the boards chairman, ranking members, and treasurer. each member is equally likely to serve in any of the positions. Three members are randomly selected and assigned to be the new chairman, ranking member, and treasurer. What is the probability of randomly selecting the three members who currently hold the positions of chairman, ranking member, and treasurer and reassigning them to their current positions?"</em>
<em />
<em />
The permutation of choosing 3 members from a group of 11 would be:
P(n,r) = 
Where n would be the total [in this case n is 11] & r would be 3
Which is:
P(11,3) = 
So there are total of 990 possible way and there is ONLY ONE WAY for them to be reassigned. Hence the probability would be:
1/990
Answer:
<em>The coordinates of b are: B=(-7,-8)</em>
Step-by-step explanation:
We are given the coordinates of the midpoint of
as M=(-5,-2).
We are also given the coordinates of A=(-3,4). The question requires us to calculate the coordinates of the other endpoint B.
Let (xb,yb) the coordinates of B. The coordinates of the midpoint can be calculated as follows:


We know xa=-3 and xm=-5. Solve the first equation for xb:

Substituting:


We can solve the second equation for xb and get:

Since ya=4 and ym=-2, then:


Thus, the coordinates of b are: B=(-7,-8)
Answer:
v = 25.6
Step-by-step explanation:
1. Multiply both sides of the equation by 4.
(6.4)(4) = 25.6
The minimum value for 2x is 0
<span>the maximum value is achieved when A, D and C are collinear and the quadrilateral ABCD becomes an isosceles triangle ABC </span>
<span>base AB = 52 and vertical angle 2x + 34° </span>
<span>For the sine law </span>
<span>(sin 2x)/22 = (sin ADB)/AB </span>
<span>(sin 34°)/30 = (sin BDC)/BC </span>
<span>is given that AB = BC, and sin ADC = sin BDC because they are supplementary, so from </span>
<span>(sin ADC)/AB = (sin BDC)/BC </span>
<span>it follows </span>
<span>(sin 2x)/22 = (sin 34°)/30 </span>
<span>sin 2x = 22 (sin 34°)/30 </span>
<span>2x = asin(22 (sin 34°)/30) ≈ 24.2° </span>
<span>x = 0.5 asin(22 (sin 34°)/30) ≈ 12.1° </span>
<span>0 < x < 12.1°</span>