You could multiply again by 2 or long multiply by 2
This problem can be readily solved if we are familiar with the point-slope form of straight lines:
y-y0=m(x-x0) ...................................(1)
where
m=slope of line
(x0,y0) is a point through which the line passes.
We know that the line passes through A(3,-6), B(1,2)
All options have a slope of -4, so that should not be a problem. In fact, if we check the slope=(yb-ya)/(xb-xa), we do find that the slope m=-4.
So we can check which line passes through which point:
a. y+6=-4(x-3)
Rearrange to the form of equation (1) above,
y-(-6)=-4(x-3) means that line passes through A(3,-6) => ok
b. y-1=-4(x-2) means line passes through (2,1), which is neither A nor B
****** this equation is not the line passing through A & B *****
c. y=-4x+6 subtract 2 from both sides (to make the y-coordinate 2)
y-2 = -4x+4, rearrange
y-2 = -4(x-1)
which means that it passes through B(1,2), so ok
d. y-2=-4(x-1)
this is the same as the previous equation, so it passes through B(1,2),
this equation is ok.
Answer: the equation y-1=-4(x-2) does NOT pass through both A and B.
To solve this, we have to find the volume of the cylinder first. The formula to be used is

Given:V= ?r= 6cmh= 10cm
Solution:

V= (3.14)(6cm)

x 10cmV= (3.14)(

) x 10cmV= (

) x 10cmV= 1130.4cm^3
Finding the volume of the cylinder, we can now solve what the weight of the oil is. Using the formula of density, Density = mass/volume, we can derive a formula to get the weight.
Given:Density = 0.857 gm/cm^3Volume = 1130.4 cm^3
Solution:weight = density x volumew= (0.857 gm/cm^3) (1130.4cm^3)w= 968.7528 gm
The weight of the oil is 968.75 gm.
Answer:
D
Step-by-step explanation:
Answer:
1:4
Step-by-step explanation: