<span>Highest point = 1406.25
Number of seconds = 9.375
We've been given the quadratic equation y = -16t^2 + 300t which describes a parabola. Since a parabola is a symmetric curve, the highest value will have a t value midway between its roots. So using the quadratic formula with A = -16, B = 300, C = 0. We get the roots of t = 0, and t = 18.75. The midpoint will be (0 + 18.75)/2 = 9.375
So let's calculate the height at t = 9.375.
y = -16t^2 + 300t
y = -16(9.375)^2 + 300(9.375)
y = -16(87.890625) + 300(9.375)
y = -1406.25 + 2812.5
y = 1406.25
So the highest point will be 1406.25 after 9.375 seconds.
Let's verify that. I'll use the value of (9.375 + e) for the time and substitute that into the height equation and see what I get.'
y = -16t^2 + 300t
y = -16(9.375 + e)^2 + 300(9.375 + e)
y = -16(87.890625 + 18.75e + e^2) + 300(9.375 + e)
y = -1406.25 - 300e - 16e^2 + 2812.5 + 300e
y = 1406.25 - 16e^2
Notice that the only term with e is -16e^2. Any non-zero value for e will cause that term to be negative and reduce the total value of the equation. Therefore any time value other than 9.375 will result in a lower height of the cannon ball. So 9.375 is the correct time and 1406.25 is the correct height.</span>
Since k is constant (the same for every point), we can find k when given any point by dividing the y-coordinate by the x-coordinate.
Answer:
4x² -29x +51
Step-by-step explanation:
Put x-3 where x is in the original function definition, then "simplify". I think you'll find it convenient to rewrite the original function definition first.
... g(x) = 4x² -5x = x(4x -5)
Substituting, we have
... g(x-3) = (x -3)(4(x -3) -5)
... = (x -3)(4x -17) . . . . . simplify right factor
... = 4x² -12x -17x +51
... g(x -3) = 4x² -29x +51
(10,1250),(20,1400)
slope = (1400 - 1250) / (20 - 10) = 150/10 = 15
so every hr of training raises the salary by $ 15