Answer:
actually it's 234
brainliest this was hard
Step-by-step explanation:
You owe half of 272 which is 136
Compute the definite integral:
integral_0^1 (5 x + 8)/(x^2 + 3 x + 2) dx
Rewrite the integrand (5 x + 8)/(x^2 + 3 x + 2) as (5 (2 x + 3))/(2 (x^2 + 3 x + 2)) + 1/(2 (x^2 + 3 x + 2)):
= integral_0^1 ((5 (2 x + 3))/(2 (x^2 + 3 x + 2)) + 1/(2 (x^2 + 3 x + 2))) dx
Integrate the sum term by term and factor out constants:
= 5/2 integral_0^1 (2 x + 3)/(x^2 + 3 x + 2) dx + 1/2 integral_0^1 1/(x^2 + 3 x + 2) dx
For the integrand (2 x + 3)/(x^2 + 3 x + 2), substitute u = x^2 + 3 x + 2 and du = (2 x + 3) dx.
This gives a new lower bound u = 2 + 3 0 + 0^2 = 2 and upper bound u = 2 + 3 1 + 1^2 = 6: = 5/2 integral_2^6 1/u du + 1/2 integral_0^1 1/(x^2 + 3 x + 2) dx
Apply the fundamental theorem of calculus.
The antiderivative of 1/u is log(u): = (5 log(u))/2 right bracketing bar _2^6 + 1/2 integral_0^1 1/(x^2 + 3 x + 2) dx
Evaluate the antiderivative at the limits and subtract.
(5 log(u))/2 right bracketing bar _2^6 = (5 log(6))/2 - (5 log(2))/2 = (5 log(3))/2: = (5 log(3))/2 + 1/2 integral_0^1 1/(x^2 + 3 x + 2) dx
For the integrand 1/(x^2 + 3 x + 2), complete the square:
= (5 log(3))/2 + 1/2 integral_0^1 1/((x + 3/2)^2 - 1/4) dx
For the integrand 1/((x + 3/2)^2 - 1/4), substitute s = x + 3/2 and ds = dx.
This gives a new lower bound s = 3/2 + 0 = 3/2 and upper bound s = 3/2 + 1 = 5/2: = (5 log(3))/2 + 1/2 integral_(3/2)^(5/2) 1/(s^2 - 1/4) ds
Factor -1/4 from the denominator:
= (5 log(3))/2 + 1/2 integral_(3/2)^(5/2) 4/(4 s^2 - 1) ds
Factor out constants:
= (5 log(3))/2 + 2 integral_(3/2)^(5/2) 1/(4 s^2 - 1) ds
Factor -1 from the denominator:
= (5 log(3))/2 - 2 integral_(3/2)^(5/2) 1/(1 - 4 s^2) ds
For the integrand 1/(1 - 4 s^2), substitute p = 2 s and dp = 2 ds.
This gives a new lower bound p = (2 3)/2 = 3 and upper bound p = (2 5)/2 = 5:
= (5 log(3))/2 - integral_3^5 1/(1 - p^2) dp
Apply the fundamental theorem of calculus.
The antiderivative of 1/(1 - p^2) is tanh^(-1)(p):
= (5 log(3))/2 + (-tanh^(-1)(p)) right bracketing bar _3^5
Evaluate the antiderivative at the limits and subtract. (-tanh^(-1)(p)) right bracketing bar _3^5 = (-tanh^(-1)(5)) - (-tanh^(-1)(3)) = tanh^(-1)(3) - tanh^(-1)(5):
= (5 log(3))/2 + tanh^(-1)(3) - tanh^(-1)(5)
Which is equal to:
Answer: = log(18)
80x by 80x up and down and 64y by 64y left and right
Answer: 1 27
2. 54
9 243
10. 270
Step-by-step explanation: for one batch, the total minutes will be 15 + 12, so 27. Multiply 27 times b, the number of batches.
There may be another solution IF he is starting to prepare the next batch while the preceding is in the oven. Since this is not stated, I won't offer that solution here.