Answer:
B :
Step-by-step explanation:
If you divide a rhombus using its diagonals, you get 4 right triangles, whose legs are both 1/2 the length of the diagonals.
This means that the legs of one of those 4 triangles have lengths of 2x/2, and 8x/2, so the legs of one of those triangles x and 4x. This makes the length of one side equal to
. Because all 4 sides are the same length, you multiply this value by 4, and get
, which is B.
<h2>Solving for the Distance between two Points</h2><h3>
Answer:</h3>
or 
<h3>
Step-by-step explanation:</h3>
<em>Please refer to my answer from this Question to know more about distances between two points: <u>brainly.com/question/24629826</u></em>
Given:


Solving for the Distance:

<u>Note:</u>

Q6.
The slope-intercept form: y = mx + b
m - slope
b - y-intercept
We have: slope m = 3, y-intercept (0, 4) → b= 4
<h3>Answer: y = 3x + 4</h3>
Q7.
2x + 4y = 4 |subtract 2x from both sides
4y = -2x + 4 |divide both sides by 4
y = -0.5x + 1
Only second graph has y-intercept = 1.
<h3>Answer: The second graph.</h3>
Q8.
The point-slope form:

We have

Substitute:

<h3>Answer: The first equation.</h3>
Q9.
It's a vertical line. The equation of a vertical line is x = <em>a</em>, where <em>a</em> is any real number.
<h3>Answer: x = -4</h3>
Answer: -1
The negative value indicates a loss
============================================================
Explanation:
Define the three events
A = rolling a 7
B = rolling an 11
C = roll any other total (don't roll 7, don't roll 11)
There are 6 ways to roll a 7. They are
1+6 = 7
2+5 = 7
3+4 = 7
4+3 = 7
5+2 = 7
6+1 = 7
Use this to compute the probability of rolling a 7
P(A) = (number of ways to roll 7)/(number total rolls) = 6/36 = 1/6
Note: the 36 comes from 6*6 = 36 since there are 6 sides per die
There are only 2 ways to roll an 11. Those 2 ways are:
5+6 = 11
6+5 = 11
The probability for event B is P(B) = 2/36 = 1/18
Since there are 6 ways to roll a "7" and 2 ways to roll "11", there are 6+2 = 8 ways to roll either event.
This leaves 36-8 = 28 ways to roll anything else
P(C) = 28/36 = 7/9
-----------------------------
In summary so far,
P(A) = 1/6
P(B) = 1/18
P(C) = 7/9
The winnings for each event, let's call it W(X), represents the prize amounts.
Any losses are negative values
W(A) = amount of winnings if event A happens
W(B) = amount of winnings if event B happens
W(C) = amount of winnings if event C happens
W(A) = 18
W(B) = 54
W(C) = -9
Multiply the probability P(X) values with the corresponding W(X) values
P(A)*W(A) = (1/6)*(18) = 3
P(B)*W(B) = (1/18)*(54) = 3
P(C)*W(C) = (7/9)*(-9) = -7
Add up those results
3+3+(-7) = -1
The expected value for this game is -1.
The player is expected to lose on average 1 dollar per game played.
Note: because the expected value is not 0, this is not a fair game.
Answer:
46.4 cm3
Step-by-step explanation: