Answer:
Step-by-step explanation:
Based on the fact that it is congruent, it is also 48 degrees.
The dimensions of the rectangle are length 156 m and a width of 65m, and a perimeter P = 442m
<h3>How to find the dimensions of the rectangle?</h3>
For a rectangle of length L and width W, the diagonal is:

Here we know that the diagonal is 169m.
And the ratio of the length to the width is 12:5
This means that:
W = (5/12)*L
Replacing all that in the diagonal equation:

So the length is 156 meters, and the width is:
W = (5/12)*156 m = 65m
Finally, the perimeter is:
P = 2*(L + W) = 2*(156 m + 65m) = 442m
If you want to learn more about rectangles:
brainly.com/question/17297081
#SPJ1
Answer:
![\left[\begin{array}{ccc}3&-1&\\-1&1/2\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%26-1%26%5C%5C-1%261%2F2%5C%5C%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
The matrix system for the linear equations: x + 2y = 8, 2x + 6y = 9
![\left[\begin{array}{ccc}1&2&\\2&6\\\end{array}\right] \left[\begin{array}{ccc}x\\y\end{array}\right] = \left[\begin{array}{ccc}8\\9\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%26%5C%5C2%266%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%5C%5Cy%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D8%5C%5C9%5Cend%7Barray%7D%5Cright%5D)
To get the coefficient of x and y, the inverse of the first matrix (let the first matrix be A) must be known.
= (1 / determinant of A) x Adjoint of A
the determinant of A = (1 x 6) - (2 x 2) = 6 - 4 = 2
Adjoint of A = ![\left[\begin{array}{ccc}6&-2&\\-2&1\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D6%26-2%26%5C%5C-2%261%5C%5C%5Cend%7Barray%7D%5Cright%5D)
=
= ![\left[\begin{array}{ccc}3&-1&\\-1&1/2\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%26-1%26%5C%5C-1%261%2F2%5C%5C%5Cend%7Barray%7D%5Cright%5D)
Is there any duplicate in x-value wrt y-value if you apply the vertical line test?
<span />