let's recall that the cosine/adjacent is negative on the II Quadrant, whilst the sine/opposite is positive on that same quadrant, also let's recall that the hypotenuse is never negative, since it's just a radius distance.
![\bf cos(\theta )=\cfrac{\stackrel{adjacent}{-5}}{\stackrel{hypotenuse}{8}}\qquad \impliedby \textit{let's find the \underline{opposite side}} \\\\\\ \textit{using the pythagorean theorem} \\\\ c^2=a^2+b^2\implies \pm\sqrt{c^2-a^2}=b \qquad \begin{cases} c=hypotenuse\\ a=adjacent\\ b=opposite\\ \end{cases} \\\\\\ \pm\sqrt{8^2-(-5)^2}=b\implies \pm\sqrt{64-25}=b\implies \pm\sqrt{39}=b\implies \stackrel{II~Quadrant}{+\sqrt{39}=b} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20cos%28%5Ctheta%20%29%3D%5Ccfrac%7B%5Cstackrel%7Badjacent%7D%7B-5%7D%7D%7B%5Cstackrel%7Bhypotenuse%7D%7B8%7D%7D%5Cqquad%20%5Cimpliedby%20%5Ctextit%7Blet%27s%20find%20the%20%5Cunderline%7Bopposite%20side%7D%7D%20%5C%5C%5C%5C%5C%5C%20%5Ctextit%7Busing%20the%20pythagorean%20theorem%7D%20%5C%5C%5C%5C%20c%5E2%3Da%5E2%2Bb%5E2%5Cimplies%20%5Cpm%5Csqrt%7Bc%5E2-a%5E2%7D%3Db%20%5Cqquad%20%5Cbegin%7Bcases%7D%20c%3Dhypotenuse%5C%5C%20a%3Dadjacent%5C%5C%20b%3Dopposite%5C%5C%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5C%5C%20%5Cpm%5Csqrt%7B8%5E2-%28-5%29%5E2%7D%3Db%5Cimplies%20%5Cpm%5Csqrt%7B64-25%7D%3Db%5Cimplies%20%5Cpm%5Csqrt%7B39%7D%3Db%5Cimplies%20%5Cstackrel%7BII~Quadrant%7D%7B%2B%5Csqrt%7B39%7D%3Db%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)

Answer:
the answer is 2
Step-by-step explanation:
2
Answer:
52 m²
Step-by-step explanation:
12x3 = 36
2 x (11-3) = 2x8 = 16
36+16 = 52
Answer:
About half of the fish in the pond are trout
Step-by-step explanation:
109 is about half of 215