1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Crank
3 years ago
7

Please help on this one

Mathematics
2 answers:
kondor19780726 [428]3 years ago
6 0

The answer is D because it passes the horizontal line test.  

Artemon [7]3 years ago
3 0
B because a horizontal line
You might be interested in
Can anyone please help me with this I have to get it done before tomorrow
lions [1.4K]
Titania is the greatest because it has the largest magnitude(exponent). than obreron than ariel than umbriel and finally miranda
4 0
3 years ago
Question 8 (1 point)
sergey [27]
Y=-5x+4 y=7x+5 that is the line
3 0
3 years ago
If anyone knows about definite integrals for calculus then please I request help! I
kicyunya [14]

Answer:

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx

<u>Step 2: Integrate Pt. 1</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 4x^{-2}
  2. [<em>u</em>] Differentiate [Basic Power Rule, Derivative Properties]:                       \displaystyle du = \frac{-8}{x^3} \ dx
  3. [Bounds] Switch:                                                                                           \displaystyle \left \{ {{x = 9 ,\ u = 4(9)^{-2} = \frac{4}{81}} \atop {x = 5 ,\ u = 4(5)^{-2} = \frac{4}{25}}} \right.

<u>Step 3: Integrate Pt. 2</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^9_5 {\frac{-8}{x^3}e^\big{4x^{-2}}} \, dx
  2. [Integral] U-Substitution:                                                                              \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^{\frac{4}{81}}_{\frac{4}{25}} {e^\big{u}} \, du
  3. [Integral] Exponential Integration:                                                               \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}(e^\big{u}) \bigg| \limits^{\frac{4}{81}}_{\frac{4}{25}}
  4. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8} \bigg( e^\Big{\frac{4}{81}} - e^\Big{\frac{4}{25}} \bigg)
  5. Simplify:                                                                                                         \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

4 0
2 years ago
3(2−4)=−30 step by step
Margarita [4]
3•2-3•4
6-12=-30
-6=-30
false
6 0
3 years ago
A parking lot charges $3 to park a car for the first hour and $2 per hour after that. If you use more than one parking space, th
fenix001 [56]
Consider the charge for parking one car for t hours.

If t is more than 1, then the function is y=3+2(t-1), because 3 $ are payed for the first hour, then for t-1 of the left hours, we pay 2 $.

If t is one, then the rule y=3+2(t-1) still calculates the charge of 3 $, because substituting t with one in the formula yields 3.


75% is 75/100 or 0.75. 

For whatever number of hours t, the charge for the first car is 3+2(t-1) $, and whatever that expression is, the price for the second car and third car will be 

0.75 times 3+2(t-1). Thus, the charge for the 3 cars is given by:

3+2(t-1)+0.75[3+2(t-1)]+0.75[3+2(t-1)]=3+2(t-1)+<span>0.75 × 2[3 + 2(t − 1)].


Thus, the function which total parking charge of parking 3 cars for t hours is:

</span><span>f(t) = (3 + 2(t − 1)) + 0.75 × 2(3 + 2(t − 1)) 


Answer: C</span>
4 0
3 years ago
Other questions:
  • Which equation has a graph perpendicular to the graph 7x=14y-8
    7·1 answer
  • Andrea bought tacos from a food truck and left a 25\%25% tip of \$2.00$2.00. What was the price of Andrea's tacos, before tip? \
    13·1 answer
  • Which relation is a function of x?
    5·2 answers
  • A 6 inch personal pizza has 590 calories, with 240 of those from fat. A 16 inch pizza is cut into 8 slices. Estimate the number
    10·1 answer
  • An absolute value equation that equals 3 and -3
    5·1 answer
  • 25000 nearest ten thousand
    10·2 answers
  • 1 In a test, a hybrid car drove 619 yards on 1 fluid
    8·1 answer
  • What is the equation of the line that passes through (-3,-1) and has a slope of
    5·1 answer
  • A herd of dinosaurs made paintings in the sand with their claws. Each baby dinosaur made 151515 paintings and each adult dinosau
    14·1 answer
  • Quiz 3-1 parallel lines transversals and special angle pairs
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!