Ion-dipole forces
H2O has hydrogen bonding, which is a form of dipole-dipole forces, and NO3- is an ion, so the intermolecular attraction is ion-dipole.
Answer:
11.61 is the pH of 10.0 mL of a solution containing 3.96 g of sodium stearate.
Explanation:
Concentration of sodium stearate acid : c
Moles of sodium stearate = 
Volume of the solution = 10.0 mL = 0.010 L

![[C_{17}H_{35}COO^-]=c=1.294 M](https://tex.z-dn.net/?f=%5BC_%7B17%7DH_%7B35%7DCOO%5E-%5D%3Dc%3D1.294%20M)

initially c
c 0 0
At equilibrium
(c-x) x x
Dissociation constant of an acid = 
Expression of a dissociation constant of an acid is given by:

Solving for x;
x = 0.0041 M
![[OH^-]=0.0041 M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D0.0041%20M)
The pOH of the solution:
![pOH=-\log[OH^-]=-\log[0.0041 M]=2.39](https://tex.z-dn.net/?f=pOH%3D-%5Clog%5BOH%5E-%5D%3D-%5Clog%5B0.0041%20M%5D%3D2.39)
pH = 14 -pOH
pH = 14 - 2.39 = 11.61
11.61 is the pH of 10.0 mL of a solution containing 3.96 g of sodium stearate.
Answer:
Explanation:
Whether the electrons are added or given away makes no difference to the name given to parent atom -- It is called an ion which means that it has a charge. The word atom is reserved for something on the periodic table that has no charge.
Iodine is one of seven elements that usually form as diatomic molecules. These other "diatomics" are

and

. They typically bond to themselves.
Iodine has seven valence electrons. Using valence shell electron pair repulsion (VSEPR) theory, we can predict the Lewis dot structure for

. We see there are fourteen electrons, and we can make a covalent bond, leaving three lone pairs on each atom. The bond replaces two electrons, so the number of electrons shared is two.