Well, none. It is called Thermal Energy. But you could compare it with Kinetic Energy. I hope this is the answer, if not excuse me.
Answer:0.27 L
Explanation:
We are looking for volume and are given a mass and a molarity.
Hope this helped someone.
Answer:
Vapor pressure of solution = 23.9 Torr
Explanation:
Let's apply the colligative poperty of vapor pressure to solve this:
ΔP = P° . Xm
ΔP = Vapor pressure of pure solvent - Vapor pressure of solution
We have solvent and solute mass, so let's find out the moles of each.
55.3 g / 62 g/mol = 0.89 moles
285.2 g / 18 g/mol = 15.84 moles
Let's determine the mole fraction of ethylene glycol.
Mole fraction = Moles of ethylene glyco / Total moles
0.89 moles / (0.89 + 15.84) = 0.053
25.3 Torr - Vapor pressure of solution = 25.3 Torr . 0.053
Vapor pressure of solution = 25.3 Torr . 0.053 - 25.3 Torr
Vapor pressure of solution = 23.9 Torr
Answer: The intermolecular forces increase with increasing polarization of bonds. Boiling point increases with molecular weight, and with surface area. The three major types of intermolecular interactions are dipole–dipole interactions, London dispersion forces (these two are often referred to collectively as van der Waals forces), and hydrogen bonds. Intermolecular forces are much weaker than the intramolecular forces of attraction but are important because they determine the physical properties of molecules like their boiling point, melting point, density, and enthalpies of fusion and vaporization.In order from strongest to weakest, the intermolecular forces given in the answer choices are: ion-dipole, hydrogen bonding, dipole-dipole, and Van der Waals forces. Ionic bonding is stronger than any of the given intermolecular forces, but is itself NOT an intermolecular force.
Hope this helps.. Stay safe and have a Merry Christmas!!!!!!!!!! :D
Li because its charge is +1.