1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Romashka [77]
3 years ago
12

Please hurry I need the answer like now, but I am confused. Your supposed to solve for x.​

Mathematics
2 answers:
liq [111]3 years ago
7 0

Answer:

0.8=x

Step-by-step explanation:

4x+8=7.2+5x

Subtract 4x from both sides of the equation. This eliminates 4x from one side of the equation and leaves the other side with just 1x or x.

  • 8=7.2+x

Subtract 7.2 from both sides of the equation to isolate x.

  • 0.8=x

So this concludes that 0.8=x

To check your answer, substitute 0.8 into x.

  • 4(0.8)+8=7.2+5(0.8)
  • 3.2+8=7.2+4
  • 11.2=11.2
timurjin [86]3 years ago
4 0

Answer:

0.08

Step-by-step explanation:

You might be interested in
HELP ASAP
tamaranim1 [39]

The sample mean for students with a grade point average of 3.0–4.0 is greater than students with grade point average of 2.0 - 3.0,  the results tend to

<h3>How to interpret Garret studies?</h3>

From the question, we have the following highlights

  • The sample size is large enough
  • The sample is at random
  • Students who have a grade point average of 3.0 - 4.0 sleep for an average of 6.8 hours
  • Students who have a grade point average of 2.0–3.0 sleep for an average of 6.4 hours
  • There are no outliers

From the above highlights, the sample mean for students with a grade point average of 3.0–4.0 is greater than students with grade point average of 2.0 - 3.0

This is because 6.8 is greater than 6.4

This means that Garret's theory about the hours of sleep is correct

Read more about sample at:

brainly.com/question/17012640

#SPJ1

8 0
2 years ago
Whoever answers correctly gets brainlist
-Dominant- [34]

Answer:

22/25

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
Parallel, perpendicular, or neither? 5x+3y=7 3x+5y=4
emmainna [20.7K]
Neither. They can’t be parallel because both lines have different slopes. They aren’t perpendicular either because their slopes don’t multiply to equal -1.
6 0
4 years ago
Read 2 more answers
PLEASE HELP!!!!!
ANEK [815]

Answer:

2/3 because the angles are complementary

Step-by-step explanation:

No matter what the measure of the angle is cos(x) will always equal sin(90-x).

6 0
3 years ago
Read 2 more answers
Find the area of the region enclosed by the graphs of these equations. (CALCULUS HELP)
sergiy2304 [10]

Answer:

\displaystyle A = \frac{20\sqrt{15}}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Equality Properties

  1. Multiplication Property of Equality
  2. Division Property of Equality
  3. Addition Property of Equality
  4. Subtraction Property of Equality

<u>Algebra I</u>

  • Terms/Coefficients
  • Graphing
  • Exponential Rule [Root Rewrite]:                                                                   \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Area - Integrals

U-Substitution

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:                                                       \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Area of a Region Formula:                                                                                     \displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx

Step-by-step explanation:

<u>Step 1: Define</u>

F: y = √(15 - x)

G: y = √(15 - 3x)

H: y = 0

<u>Step 2: Find Bounds of Integration</u>

<em>Solve each equation for the x-value for our bounds of integration.</em>

F

  1. Set <em>y</em> = 0:                                                                                                         0 = √(15 - x)
  2. [Equality Property] Square both sides:                                                          0 = 15 - x
  3. [Subtraction Property of Equality] Isolate <em>x</em> term:                                         -x = -15
  4. [Division Property of Equality] Isolate <em>x</em>:                                                        x = 15

G

  1. Set y = 0:                                                                                                         0 = √(15 - 3x)
  2. [Equality Property] Square both sides:                                                          0 = 15 - 3x
  3. [Subtraction Property of Equality] Isolate <em>x</em> term:                                         -3x = -15
  4. [Division Property of Equality] Isolate <em>x</em>:                                                        x = 5

This tells us that our bounds of integration for function F is from 0 to 15 and our bounds of integration for function G is 0 to 5.

We see that we need to subtract function G from function F to get our area of the region (See attachment graph for visual).

<u>Step 3: Find Area of Region</u>

<em>Integration Part 1</em>

  1. Rewrite Area of Region Formula [Integration Property - Subtraction]:     \displaystyle A = \int\limits^b_a {f(x)} \, dx - \int\limits^d_c {g(x)} \, dx
  2. [Integral] Substitute in variables and limits [Area of Region Formula]:     \displaystyle A = \int\limits^{15}_0 {\sqrt{15 - x}} \, dx - \int\limits^5_0 {\sqrt{15 - 3x}} \, dx
  3. [Area] [Integral] Rewrite [Exponential Rule - Root Rewrite]:                       \displaystyle A = \int\limits^{15}_0 {(15 - x)^{\frac{1}{2}}} \, dx - \int\limits^5_0 {(15 - 3x)^{\frac{1}{2}}} \, dx

<u>Step 4: Identify Variables</u>

<em>Set variables for u-substitution for both integrals.</em>

Integral 1:

u = 15 - x

du = -dx

Integral 2:

z = 15 - 3x

dz = -3dx

<u>Step 5: Find Area of Region</u>

<em>Integration Part 2</em>

  1. [Area] Rewrite [Integration Property - Multiplied Constant]:                       \displaystyle A = -\int\limits^{15}_0 {-(15 - x)^{\frac{1}{2}}} \, dx + \frac{1}{3}\int\limits^5_0 {-3(15 - 3x)^{\frac{1}{2}}} \, dx
  2. [Area] U-Substitution:                                                                                   \displaystyle A = -\int\limits^0_{15} {u^{\frac{1}{2}}} \, du + \frac{1}{3}\int\limits^0_{15} {z^{\frac{1}{2}}} \, dz
  3. [Area] Reverse Power Rule:                                                                         \displaystyle A = -(\frac{2u^{\frac{3}{2}}}{3}) \bigg|\limit^0_{15} + \frac{1}{3}(\frac{2z^{\frac{3}{2}}}{3}) \bigg|\limit^0_{15}
  4. [Area] Evaluate [Integration Rule - FTC 1]:                                                   \displaystyle A = -(-10\sqrt{15}) + \frac{1}{3}(-10\sqrt{15})
  5. [Area] Multiply:                                                                                               \displaystyle A = 10\sqrt{15} + \frac{-10\sqrt{15}}{3}
  6. [Area] Add:                                                                                                     \displaystyle A = \frac{20\sqrt{15}}{3}

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Area Under the Curve - Area of a Region (Integration)

Book: College Calculus 10e

3 0
3 years ago
Other questions:
  • Express the area of the triangle shown below in terms of b and θ only.
    7·1 answer
  • Evaluate 3x+y when x=13 and y=−74 . Write your answer as a fractionin simplest form.
    11·1 answer
  • Round 10,982 to the nearest hundred
    8·2 answers
  • Select the correct function with the following transformations: shifted left 1 and up 3.
    9·1 answer
  • Which set of values could be from a direct proportion?
    5·1 answer
  • Someone please help I'm struggling even though its easy:(​
    9·1 answer
  • Write an<br> explicit formula for<br> ans<br> the nth<br> term of the sequence 8, 24, 72, ...
    12·1 answer
  • 2/3 divided by -1 1/3
    9·2 answers
  • PLEASE HELP!!! In a set of 1,000 integers from 1 to 1,000, an integer chosen at random on a single trial should be an integer fr
    8·1 answer
  • Evaluate the determinate:
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!