Answer:
The concentration of a saturated solution of CuF₂ in aqueous 0.20 M NaF is 4.0×10⁻⁵ M.
Explanation:
Consider the ICE take for the solubility of the solid, CuF₂ as:
CuF₂ ⇄ Cu²⁺ + 2F⁻
At t=0 x - -
At t =equilibrium (x-s) s 2s
The expression for Solubility product for CuF₂ is:
![K_{sp}=\left [ Cu^{2+} \right ]\left [ F^- \right ]^2](https://tex.z-dn.net/?f=K_%7Bsp%7D%3D%5Cleft%20%5B%20Cu%5E%7B2%2B%7D%20%5Cright%20%5D%5Cleft%20%5B%20F%5E-%20%5Cright%20%5D%5E2)


Given s = 7.4×10⁻³ M
So, Ksp is:


Ksp = 1.6209×10⁻⁶
Now, we have to calculate the solubility of CuF₂ in NaF.
Thus, NaF already contain 0.20 M F⁻ ions
Consider the ICE take for the solubility of the solid, CuF₂ in NaFas:
CuF₂ ⇄ Cu²⁺ + 2F⁻
At t=0 x - 0.20
At t =equilibrium (x-s') s' 0.20+2s'
The expression for Solubility product for CuF₂ is:
![K_{sp}=\left [ Cu^{2+} \right ]\left [ F^- \right ]^2](https://tex.z-dn.net/?f=K_%7Bsp%7D%3D%5Cleft%20%5B%20Cu%5E%7B2%2B%7D%20%5Cright%20%5D%5Cleft%20%5B%20F%5E-%20%5Cright%20%5D%5E2)

Solving for s', we get
<u>s' = 4.0×10⁻⁵ M</u>
<u>The concentration of a saturated solution of CuF₂ in aqueous 0.20 M NaF is 4.0×10⁻⁵ M.</u>
The law of conservation of energy states that energy can neither be created nor destroyed.
It can only be converted from one form of energy to another.
I hope this helps! ❤️
Answer:
LOL i belive its 200 because i did this exact same thing yesterday for homework and got it right so yeah, it should work. if it doesnt im sorry! but yeah XD sub to my yt channel too! DB_PLAYS <3
Explanation:
The ammonia gas, having a lower molecular weight than the hydrogen chloride, will diffuse faster and travel a greater length of the tube. Consequently, the white ring of ammonium chloride will form much closer to hydrochloric acid end of the tube. Which in conclusion your answer will be D :)