Well, I bet you want your answer right away! So here it is.
<span>Given <span>f (x) = 3x + 2</span> and <span>g(x) = 4 – 5x</span>, find <span>(f + g)(x), (f – g)(x), (f × g)(x)</span>, and <span>(f / g)(x)</span>.</span>
To find the answers, all I have to do is apply the operations (plus, minus, times, and divide) that they tell me to, in the order that they tell me to.
(f + g)(x) = f (x) + g(x)
= [3x + 2] + [4 – 5x]
= 3x + 2 + 4 – 5x
= 3x – 5x + 2 + 4
= –2x + 6
(f – g)(x) = f (x) – g(x)
= [3x + 2] – [4 – 5x]
= 3x + 2 – 4 + 5x
= 3x + 5x + 2 – 4
= 8x – 2
(f × g)(x) = [f (x)][g(x)]
= (3x + 2)(4 – 5x)
= 12x + 8 – 15x2 – 10x
= –15x2 + 2x + 8
<span>\left(\small{\dfrac{f}{g}}\right)(x) = \small{\dfrac{f(x)}{g(x)}}<span><span>(<span><span>g</span><span>f</span><span></span></span>)</span>(x)=<span><span><span>g(x)</span></span><span><span>f(x)</span></span><span></span></span></span></span><span>= \small{\dfrac{3x+2}{4-5x}}<span>=<span><span><span>4−5x</span></span><span><span>3x+2</span></span><span></span></span></span></span>
My answer is the neat listing of each of my results, clearly labelled as to which is which.
( f + g ) (x) = –2x + 6
( f – g ) (x) = 8x – 2
( f × g ) (x) = –15x2 + 2x + 8
<span>\mathbf{\color{purple}{ \left(\small{\dfrac{\mathit{f}}{\mathit{g}}}\right)(\mathit{x}) = \small{\dfrac{3\mathit{x} + 2}{4 - 5\mathit{x}}} }}<span><span>(<span><span>g</span><span>f</span><span></span></span>)</span>(x)=<span><span><span>4−5x</span></span><span><span>3x+2</span></span><span>
Hope I helped! :) If I did not help that's okay.
-Duolingo
</span></span></span></span>
Answer:
Step-by-step explanation:
The supplement of 105 = 180 - 105 = 75
The supplement of 148 = 180 -148 = 32
x is the sum of these two angles
x = 32 + 75
x = 107
Exterior angles are the sum of the 2 angles not connect to the exterior angle you are trying to find.
Answer: Circumcenter
Step-by-step explanation: The circumcenter is the point where all perpendicular bisectors of a triangle meet. The 3 perpendicular bisectors of the 3 sides of the triangle meet at the point which is labeled in this triangle as H.