As shown in the figure, we have two straight line. One of them has a negative slope and the other has a positive one. In two dimensions, the equation for non-vertical lines is often given in the slope-intercept form by:

being m the slope of the line and <span>b the y-intercept of it.
On the other hand, if x = 0 then y = b.
First of all we will order the equations above without </span>inequalities<span> like this:
A. </span>

,

<span>
B. </span>

,
C. 
,
D. 
,

<span>
As shown in the figure b = -1 for one straight and b = 4 for the second one. This values take place when x = 0. So, we discard C and D, because if x = 0, then:
</span>
For C, b = 1 and b = 4
For D, b = -1 and b = -4
Let's analyze A and B. So:
For A, m = 5 and m = 3
For B, m = 5 and m = -3
Therefore, we discard A because of the statement above.
Finally the answer is B. So, the inequalities are:
(1)

(2)

Let's prove this answer. We will take the point (2, 0) that is in the region in gray. So, substituting this point in the inequalities, we have:
(1)

(2)

In fact, this is true.
Yes, the bisecting line will also bisect the side
Answer:
A
Step-by-step explanation:
Replace the point (0,0) in each inequality
A. y - 4 < 3x - 1
B. y - 1 < 3x - 4
C. y + 4 < 3x - 1
D. y + 4 < 3x + 1
A. 0 - 4 < 3(0) - 1
- 4 < - 1
True
B. 0 - 1 < 3(0) - 4
- 1 < - 4
False
C. y + 4 < 3x - 1
0 + 4 < 3(0) - 1
4 < - 1
False
D. y + 4 < 3x + 1
0 + 4 < 3(0) + 1
4 < 1
False
Answer:
The probability that event B will occur is 0.45
Step-by-step explanation:
Given;
probability that event A occurs, P(A) = 0.4
the probability that events A and B both occur, P(A ∩ B) = 0.25
the probability that either event A or event B occurs, P(A ∪ B) = 0.6
To determine the probability that event B will occur, we use probability addition rule;
P(A) + P(B) = P(A ∩ B) + P(A ∪ B)
0.4 + P(B) = 0.25 + 0.6
0.4 + P(B) = 0.85
P(B) = 0.85 - 0.4
P(B) = 0.45
Therefore, the probability that event B will occur is 0.45
Answer:
The value is 7x + 6
Step-by-step explanation: