Answer:
<u><em>9 months</em></u>
Step-by-step explanation:
Principal= P= $1200
Rate=R= 15%
Interest= I= $135
Time= T= ?
I=P*R*T/100
135= 1200*15*T/100
135*100=18000*T
13500/18000=T
T= 0.75 years
T= 0.75*12= 9 months
The total area is:
A = Ab + Al
Where,
Ab: base area
Al: lateral area
We have then:
For the base area:
Ab = (2) * (2)
Ab = 4 units ^ 2
For the lateral area:
Al = (4) * (1/2) * (2) * (root ((1) ^ 2 + (3) ^ 2))
Al = (4) * (root (1 + 9))
Al = 4raiz (10) units ^ 2
Total area:
A = 4 + 4raiz (10)
Answer:
A = 4 + 4raiz (10)
I know this is not an answer but, I love your handwriting!
It is soooo much neater than mine!
- Laura <3
No because 77 is greater than the lowest number
<span>In logic, the converse of a conditional statement is the result of reversing its two parts. For example, the statement P → Q, has the converse of Q → P.
For the given statement, 'If a figure is a rectangle, then it is a parallelogram.' the converse is 'if a figure is a parallelogram, then it is rectangle.'
As can be seen, the converse statement is not true, hence the truth value of the converse statement is false.
</span>
The inverse of a conditional statement is the result of negating both the hypothesis and conclusion of the conditional statement. For example, the inverse of P <span>→ Q is ~P </span><span>→ ~Q.
</span><span><span>For the given statement, 'If a figure is a rectangle, then it is a parallelogram.' the inverse is 'if a figure is not a rectangle, then it is not a parallelogram.'
As can be seen, the inverse statement is not true, hence the truth value of the inverse statement is false.</span>
</span>
The contrapositive of a conditional statement is switching the hypothesis and conclusion of the conditional statement and negating both. For example, the contrapositive of <span>P → Q is ~Q → ~P. </span>
<span><span>For the given statement, 'If a figure is a rectangle, then
it is a parallelogram.' the contrapositive is 'if a figure is not a parallelogram,
then it is not a rectangle.'
As can be seen, the contrapositive statement is true, hence the truth value of the contrapositive statement is true.</span> </span>