Answer:
- A. segment A double prime B double prime = segment AB over 2
Step-by-step explanation:
<u>Triangle ABC with coordinates of:</u>
- A = (-3, 3), B = (1, -3), C = (-3, -3)
<u>Translation (x + 2, y + 0), coordinates will be:</u>
- A' = (-1, 3), B = ( 3, -3), C = (-1, -3)
<u>Dilation by a scale factor of 1/2 from the origin, coordinates will be:</u>
- A'' = (-0.5, 1.5), B'' = (1.5, -1.5), C= (-0.5, -1.5)
<u>Let's find the length of AB and A''B'' using distance formula</u>
- d = √(x2-x1)² + (y2 - y1)²
- AB = √(1-(-3))² + (-3 -3)² = √4²+6² = √16+36 = √52 = 2√13
- A''B'' = √(1.5 - (-0.5)) + (-1.5 - 1.5)² = √2²+3² = √13
<u>We see that </u>
<u>Now the answer options:</u>
A. segment A double prime B double prime = segment AB over 2
B. segment AB = segment A double prime B double prime over 2
- Incorrect. Should be AB = A''B''*2
C. segment AB over segment A double prime B double prime = one half
- Incorrect. Should be AB/A''B'' = 2
D. segment A double prime B double prime over segment AB = 2
- Incorrect. Should be A''B''/AB = 1/2
1. -2<2 2. -4> -5. -20<20. -7>-8. -10<-1. 50>-100
<span>Width = 6
Length = 30
We know the perimeter of a rectangle is simply twice the sum of it's length and width. So we have the expression:
72 = 2*(L + W)
And since we also know for this rectangle that it's length is 6 more than 4 times it's width, we have this equation as well:
L = 6 + 4*W
So let's determine what the dimensions are. Since we have a nice equation that expresses length in terms of width, let's substitute that equation into the equation we have for the perimeter and solve. So:
72 = 2*(L + W)
72 = 2*(6 + 4*W + W)
72 = 2*(6 + 5*W)
72 = 12 + 10*W
60 = 10*W
6 = W
So we now know that the width is 6. And since we have an expression telling us the length when given the width, we can easily determine the length. So:
L = 6 + 4*W
L = 6 + 4*6
L = 6 + 24
L = 30
And now we know the length as well.</span>
False if that's what you're asking
Answer:
414.72
Step-by-step explanation: