Answer:
Molecular solid
Explanation:
A molecular solid has a low melting point, they are soft and do not conduct electricity.
We have been told in the question that the solid does not really dissolve in water and it's solution does not improve the electrical conductivity of water. Hence, it must be a molecular solid.
Ionization energy refers to the amount of energy needed to remove an electron from an atom. Ionization energy decreases as we go down a group. Ionization energy increases from left to right across the periodic table.
<h3>What is ionization energy?</h3>
Ionization is the process by which ions are formed by the gain or loss of an electron from an atom or molecule.
Ionization energy is defined as the energy required to remove the most loosely bound electron from a neutral gaseous atom.
When we move across a period from left to right then there occurs a decrease in atomic size of the atoms. Therefore, ionization energy increases along a period but decreases along a group.
Smaller is the size of an atom more will be the force of attraction between its protons and electrons. Hence, more amount of energy is required to remove an electron.
Thus, we can conclude that the energy required to remove an electron from a gaseous atom is called ionization energy.
Learn more about the ionization energy here:
brainly.com/question/14294648
#SPJ1
Answer:
No, compound A and B are not the same compound
Explanation:
According to the law of definite proportion "every chemical compound contains fixed and constant proportions (by mass) of its constituent elements." (Encyclopedia Britannica)
We can see in the question that the ratio of flourine to sulphur in compound A is 1.18 while the ratio of flourine to sulphur in compound B is 2.37.
The two chemical compounds do not contain a fixed proportion by mass of their constituent elements therefore, they can not be same compound according to the law of definite proportions.
Answer:

Explanation:
Hello!
In this case, since calcium's oxidation state when forming ionic bonds is +2 and sulfur's oxidation state when bonding those bonds is -2, for the required formula we write:

Now, since they have the same charge number, we infer the ionic compound formed when they bond is calcium sulfide:

Best regards!