We have
(a + b)² = a² + 2ab + b²
so that with a = x² and b = 5, we have
x⁴ + 10x² + 25 = (x² + 5)²
Next, we have
a² - b² = (a - b) (a + b)
so that with a = x and b = √5 i,
x² + 5 = x² - (-5) = (x - √5 i) (x + √5 i)
So, the complete factorization over the complexes is
(x - √5 i)² (x + √5 i)²
Answer:
The correct answer is: Option D) 5
Step-by-step explanation:
Given equation is:

In order to find that which values of x makes the equation true, we have to put each value of x in the equation. When both sides of equations will be equal, that value of x will be true for the equation.
Putting x = 2

Putting x = 3

Putting x=4

Putting x = 5

The equation is true for x = 5
Hence,
The correct answer is: Option D) 5
It depends on what shape it is...
Answer:
x+y/4 = 1/2
x-3y/3 = 2
move variables to one side:
multiply the first equation by 4 to get: x+y =2
and the second equation by 3 to get: x-3y =6
then subtract the equations to cancel out x:
x+y = 2
- x-3y = 6
then u get
y--3y = 2-6
4y = -4
y=-1
substitute to solve for x:
x-1 / 4 =1/2
x-1 = 2
x=3
check:
3+-1
2/4= 1/2
correct!!!