You have to split it into triangles
but you have to know how to use pythagorus in 3D shapes
Answer:

Step-by-step explanation:
In order to solve this problem we can make use of the following formula:

where θ is the total angle the basket has turned, ω is the angular velocity and t is the time.
Generally theta is written in radians and omega is written in radians per second. Now, since the revolutions are directly related to the radians and they want us to write our answer in revolutions, we can directly use the provided speeds in the formula, so we can rewrite it as:

where n represents the number of revolutions and f is the frequency at which the basket is turning.
The movement of the cylindrial basket can be split in two stages, when it accelerates and when it decelerates. So let's analye the first stage:

and now let's analyze the second stage, where it decelerates, so we get:

So now that we know how many revolutions the cylindrical basket will take as it accelerates and as it decelerates we can add them to get:
n=18rev+26rev=44rev
So the basket will turn a total of 44 revolutions during this 22s interval.
We are given: On january 1, 2000 initial population = 67,255.
Number of people increase each year = 2935 people.
Therefore, 67,255 would be fix value and 2935 is the rate at which population increase.
Let us assume there would be t number of years after year 2000 and population P after t years is taken by function P(t).
So, we can setup an equation as
Total population after t years = Number of t years * rate of increase of population + fix given population.
In terms of function it can be written as
P(t) = t * 2935 + 67255.
Therefore, final function would be
P(t) = 2935t +67255.
So, the correct option is d.P(t) = 67255 + 2935t.
Answer:
The value that represents the 90th percentile of scores is 678.
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:

Find the value that represents the 90th percentile of scores.
This is the value of X when Z has a pvalue of 0.9. So X when Z = 1.28.




The value that represents the 90th percentile of scores is 678.
Answer:
14.9
Step-by-step explanation:
50-5.03 = 44.97
44.97 ÷ 3 = 14.99