Answer:
3
Step-by-step explanation:
In the Slope-Intercept Formula, <em>y</em><em> </em><em>=</em><em> </em><em>mx</em><em> </em><em>+</em><em> </em><em>b</em><em>,</em><em> </em><em>m</em><em> </em>is the <em>Rate</em><em> </em><em>of</em><em> </em><em>Change</em><em> </em>[<em>Slope</em>]. Anyway, starting from the <em>y-intercept</em><em> </em>of [0, 2], move 3 units <em>north</em><em> </em>over 1 unit <em>east</em><em>.</em><em> </em>That is called <em>rise</em><em>\</em><em>run</em><em> </em><em>→</em><em> </em>3\1 = 3.
I am joyous to assist you anytime.
Answer: B. 20
Step-by-step explanation: 1/5 of 25 is 5 and 5 of those are red so 25-5=20
Answer:
8
Step-by-step explanation:
I believe that the answer is 8
Answer:1.108
Step-by-step explanation:5.45 ÷ 5=1.108
Answer:
The integrals was calculated.
Step-by-step explanation:
We calculate integrals, and we get:
1) ∫ x^4 ln(x) dx=\frac{x^5 · ln(x)}{5} - \frac{x^5}{25}
2) ∫ arcsin(y) dy= y arcsin(y)+\sqrt{1-y²}
3) ∫ e^{-θ} cos(3θ) dθ = \frac{e^{-θ} ( 3sin(3θ)-cos(3θ) )}{10}
4) \int\limits^1_0 {x^3 · \sqrt{4+x^2} } \, dx = \frac{x²(x²+4)^{3/2}}{5} - \frac{8(x²+4)^{3/2}}{15} = \frac{64}{15} - \frac{5^{3/2}}{3}
5) \int\limits^{π/8}_0 {cos^4 (2x) } \, dx =\frac{sin(8x} + 8sin(4x)+24x}{6}=
=\frac{3π+8}{64}
6) ∫ sin^3 (x) dx = \frac{cos^3 (x)}{3} - cos x
7) ∫ sec^4 (x) tan^3 (x) dx = \frac{tan^6(x)}{6} + \frac{tan^4(x)}{4}
8) ∫ tan^5 (x) sec(x) dx = \frac{sec^5 (x)}{5} -\frac{2sec^3 (x)}{3}+ sec x