2061.3 (its a repeating decimal)
The number of zeroes = the number of degrees of the equation ( highest exponent.
So the answer to this one is 17 zeroes.
The basic structure of a linear function is y=mx+b (or +c, depending on your schools curriculum)
We need to find the slope (m), and the y-intercept (b/c)
To find the slope you can pick two random points, say (2,2) and (0,1)
The formula for the slope is this: m= y1-y2 / x1-x2
So if we substitute the points in, we get 2-1 / 2-0 = 1/2
Knowing the slope, it can be substituted into to the equation: y=1/2x + b
Then, if you notice the second point- (0,1), it’s the y-intercept. The y coordinate there is 1.
To check if this is correct, a random coordinate set can be picked and substituted in to find b.
y= 1/2x + b
2 = 1/2 *2 + b
2 = 1 + b
2-1=b
1=b
Therefore, the final linear function is y = 1/2 x + 1
Answer:
False, 6:4 and 18:8 are equal ratios.
Step-by-step explanation:
Given data:
6:4 ≠ 18:8
Explanation.
1. 6:4 = 6/4 = 3/2
2. 18:8= 18/8 = 9/4 = 3/2
Hence proved:
6:4 = 18:8
Answer:
The correct option is D.
i.e.
is the correct option.
The correct graph is shown in attached figure.
Step-by-step explanation:
Considering the function
![f\left(x\right)=\frac{1}{x\left(x+4\right)}](https://tex.z-dn.net/?f=f%5Cleft%28x%5Cright%29%3D%5Cfrac%7B1%7D%7Bx%5Cleft%28x%2B4%5Cright%29%7D)
![\mathrm{Domain\:of\:}\:\frac{1}{x\left(x+4\right)}\::\quad \begin{bmatrix}\mathrm{Solution:}\:&\:x](https://tex.z-dn.net/?f=%5Cmathrm%7BDomain%5C%3Aof%5C%3A%7D%5C%3A%5Cfrac%7B1%7D%7Bx%5Cleft%28x%2B4%5Cright%29%7D%5C%3A%3A%5Cquad%20%5Cbegin%7Bbmatrix%7D%5Cmathrm%7BSolution%3A%7D%5C%3A%26%5C%3Ax%3C-4%5Cquad%20%5Cmathrm%7Bor%7D%5Cquad%20%5C%3A-4%3Cx%3C0%5Cquad%20%5Cmathrm%7Bor%7D%5Cquad%20%5C%3Ax%3E0%5C%3A%5C%5C%20%5C%3A%5Cmathrm%7BInterval%5C%3ANotation%3A%7D%26%5C%3A%5Cleft%28-%5Cinfty%20%5C%3A%2C%5C%3A-4%5Cright%29%5Ccup%20%5Cleft%28-4%2C%5C%3A0%5Cright%29%5Ccup%20%5Cleft%280%2C%5C%3A%5Cinfty%20%5C%3A%5Cright%29%5Cend%7Bbmatrix%7D)
![\mathrm{Range\:of\:}\frac{1}{x\left(x+4\right)}:\quad \begin{bmatrix}\mathrm{Solution:}\:&\:f\left(x\right)\le \:-\frac{1}{4}\quad \mathrm{or}\quad \:f\left(x\right)>0\:\\ \:\mathrm{Interval\:Notation:}&\:(-\infty \:,\:-\frac{1}{4}]\cup \left(0,\:\infty \:\right)\end{bmatrix}](https://tex.z-dn.net/?f=%5Cmathrm%7BRange%5C%3Aof%5C%3A%7D%5Cfrac%7B1%7D%7Bx%5Cleft%28x%2B4%5Cright%29%7D%3A%5Cquad%20%5Cbegin%7Bbmatrix%7D%5Cmathrm%7BSolution%3A%7D%5C%3A%26%5C%3Af%5Cleft%28x%5Cright%29%5Cle%20%5C%3A-%5Cfrac%7B1%7D%7B4%7D%5Cquad%20%5Cmathrm%7Bor%7D%5Cquad%20%5C%3Af%5Cleft%28x%5Cright%29%3E0%5C%3A%5C%5C%20%5C%3A%5Cmathrm%7BInterval%5C%3ANotation%3A%7D%26%5C%3A%28-%5Cinfty%20%5C%3A%2C%5C%3A-%5Cfrac%7B1%7D%7B4%7D%5D%5Ccup%20%5Cleft%280%2C%5C%3A%5Cinfty%20%5C%3A%5Cright%29%5Cend%7Bbmatrix%7D)
![\mathrm{Axis\:interception\:points\:of}\:\frac{1}{x\left(x+4\right)}:\quad \mathrm{None}](https://tex.z-dn.net/?f=%5Cmathrm%7BAxis%5C%3Ainterception%5C%3Apoints%5C%3Aof%7D%5C%3A%5Cfrac%7B1%7D%7Bx%5Cleft%28x%2B4%5Cright%29%7D%3A%5Cquad%20%5Cmathrm%7BNone%7D)
![\mathrm{Extreme\:Points\:of}\:\frac{1}{x\left(x+4\right)}:\quad \mathrm{Maximum}\left(-2,\:-\frac{1}{4}\right)](https://tex.z-dn.net/?f=%5Cmathrm%7BExtreme%5C%3APoints%5C%3Aof%7D%5C%3A%5Cfrac%7B1%7D%7Bx%5Cleft%28x%2B4%5Cright%29%7D%3A%5Cquad%20%5Cmathrm%7BMaximum%7D%5Cleft%28-2%2C%5C%3A-%5Cfrac%7B1%7D%7B4%7D%5Cright%29)
So, the correct graph is shown in attached figure.
Therefore, the correct option is D.
i.e.
is the correct option.