3.14*r^2=50.24 => r^2=16. => r=4. => circumference=2*3.14*4=25.12
Answer:
What is the constant variation of Y =- 2 3x?
The constant of variation, k , is 23 .
What is the constant variation of Y 1 2x?
The constant of variation, k , is 12 .
Step-by-step explanation:
yeet yeet yeet
Answer:
Step-by-step explanation:
Answer:
7
Step-by-step explanation:
I think it is correct probably
We can calculate this using arc length formula.
![L= \int\limits^a_b { \sqrt[]{1+ (\frac{dy}{dx} } )^2} \, dx](https://tex.z-dn.net/?f=L%3D%20%5Cint%5Climits%5Ea_b%20%7B%20%5Csqrt%5B%5D%7B1%2B%20%28%5Cfrac%7Bdy%7D%7Bdx%7D%20%7D%20%29%5E2%7D%20%5C%2C%20dx%20)
The first step is to find the derivative of the given function.


Now we plug this back into original integral.
![L= \int\limits^a_b { \sqrt[]{1+ 9x} \, dx](https://tex.z-dn.net/?f=L%3D%20%5Cint%5Climits%5Ea_b%20%7B%20%5Csqrt%5B%5D%7B1%2B%209x%7D%20%5C%2C%20dx%20)
We solve this integral using substituition u=9x+1. This way we end up solving elementary integral.
A final solution is:

Finaly we get that arc lenght is: