Answer:
A) R(x) = 120x - 0.5x^2
B) P(x) = - 0.75x^2 + 120x - 2500
C) 80
D) 2300
E) 80
Explanation:
Given the following :
Price of suit 'x' :
p = 120 - 0.5x
Cost of producing 'x' suits :
C(x)=2500 + 0.25 x^2
A) calculate total revenue 'R(x)'
Total Revenue = price × total quantity sold, If total quantity sold = 'x'
R(x) = (120 - 0.5x) * x
R(x) = 120x - 0.5x^2
B) Total profit, 'p(x)'
Profit = Total revenue - Cost of production
P(x) = R(x) - C(x)
P(x) = (120x - 0.5x^2) - (2500 + 0.25x^2)
P(x) = 120x - 0.5x^2 - 2500 - 0.25x^2
P(x) = - 0.5x^2 - 0.25x^2 + 120x - 2500
P(x) = - 0.75x^2 + 120x - 2500
C) To maximize profit
Find the marginal profit 'p' (x)'
First derivative of p(x)
d/dx (p(x)) = - 2(0.75)x + 120
P'(x) = - 1.5x + 120
-1.5x + 120 = 0
-1.5x = - 120
x = 120 / 1.5
x = 80
D) maximum profit
P(x) = - 0.75x^2 + 120x - 2500
P(80) = - 0.75(80)^2 + 120(80) - 2500
= -0.75(6400) + 9600 - 2500
= -4800 + 9600 - 2500
= 2300
E) price per suit in other to maximize profit
P = 120 - 0.5x
P = 120 - 0.5(80)
P = 120 - 40
P = $80
Answer:
Multi channel marketing
Explanation:
It is an approach used by company to provide different way to customer for buying products and services. it include various mode of retailing like, from store direct, from using websites, from mail, by telephones etc.
The main reason behind multi channel retailing is to sold as many as products and provide different way for customer satisfaction. it provide opportunity to customer to compare different product on different websites
Answer: Occurs only during a recession.
Explanation:
Cycling unemployment is a kind of unemployment where company lay-off workers because they can't meet up with their payments: as a result of a general drop in the demand for goods and services in the economy of country.
Cyclical unemployment are very common in recessions as companies then massively drop workers in their establishment due to general low economic activities.
Answer:
$1,115.58
Explanation:
Calculation to determine how much should you be willing to pay for this bond
Using this formula
Bond Price= cupon*{[1 - (1+i)^-n] / i} + [face value/(1+i)^n]
Where,
Par value= $1,000
Cupon= $35
Time= 10*4= 40 quarters
Rate= 0.12/4= 0.03
Let plug in the formula
Bond Price= 35*{[1 - (1.03^-40)] / 0.03} + [1,000/(1.03^40)]
Bond Price= 809.02 + 306.56
Bond Price= $1,115.58
Therefore how much should you be willing to pay for this bond is $1,115.58