The system of inequalities are
14.5·x + 9.5·y ≥ 140
7 ≤ y ≤ 10
x + y ≤ 15
2) 14.5·x + 9.5·y ≥ 140 represents the total amount of money Janine can earn
7 ≤ y ≤ 10 represents the range of values, Janine can spend dishwashing
x + y ≤ 15 represents the total number of hours Janine will like to work each week
3) 8 hours babysitting, 7 hours dishwashing
Step-by-step explanation:
The given parameters are;
The amount per hour Janine makes from babysits = $14.50
The amount per hour Janine makes from dishwashing = $9.50
The minimum number of hours Janine can spend dishwashing = 7 hours
The maximum number of hours Janine can spend dishwashing = 10 hours
The maximum number of hours Janine can work each week = 7 hours
The minimum amount she wants to make each week = $140
Let x represent the number of hours Janine spends babysitting and let y represent the number of hours Janine spends dishwashing
1) From the question, we have;
14.5·x + 9.5·y ≥ 140
7 ≤ y ≤ 10
x + y ≤ 15
2) Where
14.5·x + 9.5·y ≥ 140 represents the total amount of money Janine can earn
7 ≤ y ≤ 10 represents the range of values, Janine can spend dishwashing
x + y ≤ 15 represents the total number of hours Janine will like to work each week
Making, y, the subject of the formula of the above inequalities and plotting as functions is given as follows;
y ≥ 140/9.5 - (14.5/9.5)·x
y ≤ 15 - x
3) In order to earn as much money as possible given that the amount Janine earns from babysitting is more than the amount she earns from dishwashing, Janine should spend the least amount of time dishwashing, which is 7 hours, as given, and then spend the remaining 8 hours babysitting to receive $14.5 × 8 + $9.5×7 = $182.5
Answer:
f = 2x + 24/ 3
Step-by-step explanation:
Step 1: Divide both sides by x.
fx/x = 2/3 x^2 + 8x/x
f = 2x + 24/3
Answer:
The function is 200+50t (t= # of months)
Step-by-step explanation:
The best way to do this is to look at the question, and see no matter what, we have to pay 200 dollars to start. After which, they charge 50 bucks a month. Knowing this, we can make a function using f(x). Let C(t)= cost. Included is that graph. So for these questions, we need to see that there is an independent and a dependent variable, and we need to see that cost is affected by time. Hope this helps.
The parabolic motion is an illustration of a quadratic function
The equation that models that path of the rocket is y = -16/31x^2 + 256/31x - 880/31
<h3>How to model the function?</h3>
Given that:
x stands for time and y stands for height in feet
So, we have the following coordinate points
(x,y) = (5,0), (11,0) and (10,80)
A parabolic motion is represented as:
y =ax^2 + bx + c
At (5,0), we have:
25a + 5b + c = 0
c= -25a - 5b
At (11,0), we have:
121a + 11b + c = 0
Substitute c= -25a - 5b
121a + 11b -25a - 5b = 0
Simpify
96a + 6b = 0
At (10,80), we have:
100a + 10b + c = 80
Substitute c= -25a - 5b
100a + 10b - 25a -5b = 80
75a -5b = 80
Divide through by 5
15a -b = 16
Make b the subject
b = 15a + 16
Substitute b = 15a + 16 in 96a + 6b = 0
96a + 6(15a + 16) = 0
Expand
96a + 90a + 96 = 0
This gives
186a = -96
Solve for a
a = -16/31
Recall that:
b = 15a + 16
So, we have:
b = -15 * 16/31 + 16
b =-240/31 + 16
Take LCM
b =(-240 + 31 * 16)/31
[tex]b =256/31
Also, we have:
c= -25a - 5b
This gives
c= 25*16/31 - 5 * 256/31
Take LCM
c= -880/31
Recall that:
y =ax^2 + bx + c
This gives
y = -16/31x^2 + 256/31x - 880/31
Hence, the equation that models that path of the rocket is y = -16/31x^2 + 256/31x - 880/31
Read more about parabolic motion at:
brainly.com/question/1130127
Answer:
3 7 8 2 6 4 1 10 3 5 9 the answer