Answer:
A:
9×1=9
9×2=18
9×3=27
9×4=36
9×5=45
9×6=54
9×7=63
9×8=72
9×9=81
9×10=90
B:
It goes down by 1 after multiplying a bigger number.
C:
It goes up by 1 after multiplying a bigger number.
Step-by-step explanation:
hope this helps you and have a great day
Answer:
a. H0 : p ≤ 0.11 Ha : p >0.11 ( one tailed test )
d. z= 1.3322
Step-by-step explanation:
We formulate our hypothesis as
a. H0 : p ≤ 0.11 Ha : p >0.11 ( one tailed test )
According to the given conditions
p`= 31/225= 0.1378
np`= 225 > 5
n q` = n (1-p`) = 225 ( 1- 31/225)= 193.995> 5
p = 0.4 x= 31 and n 225
c. Using the test statistic
z= p`- p / √pq/n
d. Putting the values
z= 0.1378- 0.11/ √0.11*0.89/225
z= 0.1378- 0.11/ √0.0979/225
z= 0.1378- 0.11/ 0.02085
z= 1.3322
at 5% significance level the z- value is ± 1.645 for one tailed test
The calculated value falls in the critical region so we reject our null hypothesis H0 : p ≤ 0.11 and accept Ha : p >0.11 and conclude that the data indicates that the 11% of the world's population is left-handed.
The rejection region is attached.
The P- value is calculated by finding the corresponding value of the probability of z from the z - table and subtracting it from 1.
which appears to be 0.95 and subtracting from 1 gives 0.04998
Answer:
1) {y,x}={-3,-23}
2) {x,y}={7,-9/2}
Step-by-step explanation:
Required:
- Solve systems of equations
1) y - x = 20, 2x - 15y = -1
Equations Simplified or Rearranged :
[1] y - x = 20
[2] -15y + 2x = -1
Graphic Representation of the Equations :
x + y = 20 2x - 15y = -1
Solve by Substitution :
// Solve equation [1] for the variable y
[1] y = x + 20
// Plug this in for variable y in equation [2]
[2] -15•(x +20) + 2x = -1
[2] - 13x = 299
// Solve equation [2] for the variable x
[2] 13x = - 299
[2] x = - 23
// By now we know this much :
y = x+20
x = -23
// Use the x value to solve for y
y = (-23)+20 = -3
Solution :
{y,x} = {-3,-23}
2) 25-x=-4y,3x-2y=30
Equations Simplified or Rearranged :
[1] -x + 4y = -25
[2] 3x - 2y = 30
Graphic Representation of the Equations :
4y - x = -25 -2y + 3x = 30
Solve by Substitution :
// Solve equation [1] for the variable x
[1] x = 4y + 25
// Plug this in for variable x in equation [2]
[2] 3•(4y+25) - 2y = 30
[2] 10y = -45
// Solve equation [2] for the variable y
[2] 10y = - 45
[2] y = - 9/2
// By now we know this much :
x = 4y+25
y = -9/2
// Use the y value to solve for x
x = 4(-9/2)+25 = 7
Solution :
{x,y} = {7,-9/2}
Answer: 46
Step-by-step explanation:
you just do 30 + 16