1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rudiy27
2 years ago
11

What is this math answer

Mathematics
1 answer:
Lynna [10]2 years ago
7 0

Answer:

n = 8

Step-by-step explanation:

<h2>\frac{n}{4}  + 15 = 17</h2><h2>\frac{n}{4}  = 7 - 5</h2><h2>\frac{n}{4}  = 2</h2><h3>n = 4 \times 2</h3><h3>n = 8</h3><h3>Hope it is helpful....</h3>
You might be interested in
A cabinet door has a perimeter of 62 inches its area is 228 in.² what are the dimensions of the door
Vlad1618 [11]
P=2(L+W)
A=LW


given
P=62
62=2(L+W)
divide 2
31=L+W
minus W
L=31-W

sub into other one
A=LW
A=(31-W)(W)
228=31W-W^2
times -1
W^2-31W=-228
add 228 both sides
W^2-31W+228=0
factor
what 2 numbers multiply to get 228 and add to get -31
-19 and -12
(W-19)(W-12)=0
set to zero

W-19=0
W=19

W-12=0
W=12

sub back

L=31-W
L=31-12
L=19
or
L=31-19
L=12

the doorway is 12in by 19in

4 0
3 years ago
Solve for x in the equation 2x^2+3x-7=x^2+5x+39
Shalnov [3]
Hey there, hope I can help!

\mathrm{Subtract\:}x^2+5x+39\mathrm{\:from\:both\:sides}
2x^2+3x-7-\left(x^2+5x+39\right)=x^2+5x+39-\left(x^2+5x+39\right)

Assuming you know how to simplify this, I will not show the steps but can add them later on upon request
x^2-2x-46=0

Lets use the quadratic formula now
\mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:}
x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}

\mathrm{For\:} a=1,\:b=-2,\:c=-46: x_{1,\:2}=\frac{-\left(-2\right)\pm \sqrt{\left(-2\right)^2-4\cdot \:1\left(-46\right)}}{2\cdot \:1}

\frac{-\left(-2\right)+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1} \ \textgreater \  \mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \frac{2+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1}

Multiply the numbers 2 * 1 = 2
\frac{2+\sqrt{\left(-2\right)^2-\left(-46\right)\cdot \:1\cdot \:4}}{2}

2+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)} \ \textgreater \  \sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}

\mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \sqrt{\left(-2\right)^2+1\cdot \:4\cdot \:46} \ \textgreater \  \left(-2\right)^2=2^2, 2^2 = 4

\mathrm{Multiply\:the\:numbers:}\:4\cdot \:1\cdot \:46=184 \ \textgreater \  \sqrt{4+184} \ \textgreater \  \sqrt{188} \ \textgreater \  2 + \sqrt{188}
\frac{2+\sqrt{188}}{2} \ \textgreater \  Prime\;factorize\;188 \ \textgreater \  2^2\cdot \:47 \ \textgreater \  \sqrt{2^2\cdot \:47}

\mathrm{Apply\:radical\:rule}: \sqrt[n]{ab}=\sqrt[n]{a}\sqrt[n]{b} \ \textgreater \  \sqrt{47}\sqrt{2^2}

\mathrm{Apply\:radical\:rule}: \sqrt[n]{a^n}=a \ \textgreater \  \sqrt{2^2}=2 \ \textgreater \  2\sqrt{47} \ \textgreater \  \frac{2+2\sqrt{47}}{2}

Factor\;2+2\sqrt{47} \ \textgreater \  Rewrite\;as\;1\cdot \:2+2\sqrt{47}
\mathrm{Factor\:out\:common\:term\:}2 \ \textgreater \  2\left(1+\sqrt{47}\right) \ \textgreater \  \frac{2\left(1+\sqrt{47}\right)}{2}

\mathrm{Divide\:the\:numbers:}\:\frac{2}{2}=1 \ \textgreater \  1+\sqrt{47}

Moving on, I will do the second part excluding the extra details that I had shown previously as from the first portion of the quadratic you can easily see what to do for the second part.

\frac{-\left(-2\right)-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1} \ \textgreater \  \mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \frac{2-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1}

\frac{2-\sqrt{\left(-2\right)^2-\left(-46\right)\cdot \:1\cdot \:4}}{2}

2-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)} \ \textgreater \  2-\sqrt{188} \ \textgreater \  \frac{2-\sqrt{188}}{2}

\sqrt{188} = 2\sqrt{47} \ \textgreater \  \frac{2-2\sqrt{47}}{2}

2-2\sqrt{47} \ \textgreater \  2\left(1-\sqrt{47}\right) \ \textgreater \  \frac{2\left(1-\sqrt{47}\right)}{2} \ \textgreater \  1-\sqrt{47}

Therefore our final solutions are
x=1+\sqrt{47},\:x=1-\sqrt{47}

Hope this helps!
8 0
3 years ago
Read 2 more answers
Pleasee help meeee guysss help
Llana [10]

Answer:

A is the true answer and others are wrong

6 0
2 years ago
ind the surface area of a sphere with a radius of 12 cm. Approximate as 3.14 and round your answer to the nearest hundredth
Bezzdna [24]
The surface area of a sphere is:

A=4πr^2, if r=12 and π is approximated as 3.14 then

A≈4(3.14)(12^2)

A≈4(3.14)(144)

A≈576(3.14)

A≈1808.64 cm^2
5 0
3 years ago
HELP URGENT!! ILL GIVE BRAINLIEST
Luba_88 [7]

Answer:

I think its 21.34 sorry if i am wrong

6 0
2 years ago
Read 2 more answers
Other questions:
  • In a research sample of high school students, the variable “number of Instagram followers” formed normal distribution with a mea
    5·1 answer
  • What expression can be used to find 38 percent of 22
    9·2 answers
  • What is the distance between the points (10, 3) and (-2, -2) in the coordinate plane?
    10·1 answer
  • Which segment is the hypotenuse?​
    14·1 answer
  • 18x2 + 10x = 0<br> please help no spam!
    13·1 answer
  • This filling cabinet is 26.5 in long. 15 in wide, and 52 in tall. What is the volume and surface area of this 3D shape?
    7·1 answer
  • What equation shows a slope of 2/3 and a white intercept of 0, -2<br>​
    11·2 answers
  • In this figure
    11·1 answer
  • Helppppppppppppppppppppppppppppppppppppppppppppppppppppppppp
    7·2 answers
  • The price of a gallon of unleaded gas has risen to $2.85 today. Yesterday's price was $2.80. Find the percentage increase. Round
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!